Home
Class 12
MATHS
y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(...

`y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(1+x^(2))`

`y=tan^(-1)((3x-x^(3))/(1-3x^(2)))`
`Put x tan theta.` Then,
`y=tan^(-1)((3 tan theta - tan^(3)theta)/(1-3 tan^(2)theta))`
`=tan^(-1)(tan 3theta)`
`=3theta`
`=3tan^(-1)x`
`therefore" "(dy)/(dx)=(3)/(1+x^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Fi nd dy/dx , y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxlt1/sqrt3

Differentiate tan^(-1){(5x)/(1-6\ x^2)} , -1/(sqrt(6))ltxlt1/ (sqrt(6)) with respect to x

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))

Differentiate each of the following functions with respect to x : (i) sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2))ltxlt1/(sqrt(2)) (ii) cos^(-1)(2x(sqrt(1-x^2)),-1/sqrt(2)ltxlt1/sqrt2