Home
Class 12
MATHS
If y=sec^(-1)(1/(2x^2-1));0<x<1/(sqrt(2)...

If `y=sec^(-1)(1/(2x^2-1));0

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) for \( 0 < x < \frac{1}{\sqrt{2}} \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \cos \theta \) Let \( x = \cos \theta \). Then, we can express \( \theta \) as \( \theta = \cos^{-1}(x) \). ### Step 2: Rewrite \( y \) Substituting \( x \) into the equation for \( y \): \[ y = \sec^{-1}\left(\frac{1}{2(\cos \theta)^2 - 1}\right) \] Using the identity \( 2\cos^2\theta - 1 = \cos(2\theta) \), we can rewrite \( y \): \[ y = \sec^{-1}\left(\frac{1}{\cos(2\theta)}\right) \] ### Step 3: Simplify \( y \) Since \( \sec^{-1}(x) \) is the angle whose secant is \( x \), we have: \[ y = 2\theta \] ### Step 4: Substitute back for \( \theta \) Now substituting back for \( \theta \): \[ y = 2\cos^{-1}(x) \] ### Step 5: Differentiate \( y \) with respect to \( x \) To find \( \frac{dy}{dx} \), we differentiate \( y \): \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\cos^{-1}(x)) \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{d}{dx}(\cos^{-1}(x)) = -\frac{1}{\sqrt{1 - x^2}} \] Thus, \[ \frac{dy}{dx} = 2 \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{2}{\sqrt{1 - x^2}} \] ### Final Answer \[ \frac{dy}{dx} = -\frac{2}{\sqrt{1 - x^2}} \] ---

To find the derivative of the function \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) for \( 0 < x < \frac{1}{\sqrt{2}} \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \cos \theta \) Let \( x = \cos \theta \). Then, we can express \( \theta \) as \( \theta = \cos^{-1}(x) \). ### Step 2: Rewrite \( y \) Substituting \( x \) into the equation for \( y \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following: y=sec^(-1)(1/(2x^2-1))

y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sqrt(2))

Differentiate sec^(-1)(1/(2x^2-1)),\ 0

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=0 , is

The derivative of sec^(-1)((1)/(2x^(2)-1)) with respect to sqrt(1-x^(2))" at "x=1 , is

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

The derivative of sec^(-1)(1/(2x^2-1)) with respect to sqrt(1+3x) at x=-1/3 (a) does not exist (b) 0 (c) 1/2 (d) 1/3

The differential cofficient of sec^(- 1)(1/(2x^2-1)) w.r.t sqrt(1-x^2) is-

If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)) , u in (0,1/sqrt2)uu(1/sqrt2,1) , prove that 2dy/dx+ 1 = 0 .