Home
Class 12
MATHS
Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2...

Find `(dy)/(dx)` if `y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \tan^{-1}\left(\frac{4x}{1 + 5x^2}\right) + \tan^{-1}\left(\frac{2 + 3x}{3 - 2x}\right), \] we can follow these steps: ### Step 1: Rewrite the Function The first term can be rewritten using the identity for the tangent of a difference: \[ \tan^{-1}\left(\frac{4x}{1 + 5x^2}\right) = \tan^{-1}(5x) - \tan^{-1}(x). \] The second term can also be rewritten: \[ \tan^{-1}\left(\frac{2 + 3x}{3 - 2x}\right) = \tan^{-1}\left(\frac{2/3 + x}{1 - \frac{2}{3}x}\right) = \tan^{-1}\left(\frac{2}{3}\right) + \tan^{-1}(x). \] Thus, we can express \(y\) as: \[ y = \tan^{-1}(5x) - \tan^{-1}(x) + \tan^{-1}\left(\frac{2}{3}\right) + \tan^{-1}(x). \] ### Step 2: Simplify the Expression Notice that \(-\tan^{-1}(x) + \tan^{-1}(x)\) cancels out, leaving us with: \[ y = \tan^{-1}(5x) + \tan^{-1}\left(\frac{2}{3}\right). \] ### Step 3: Differentiate the Function Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx} \left(\tan^{-1}(5x)\right) + \frac{d}{dx}\left(\tan^{-1}\left(\frac{2}{3}\right)\right). \] Since \(\tan^{-1}\left(\frac{2}{3}\right)\) is a constant, its derivative is \(0\). Therefore, we only need to differentiate \(\tan^{-1}(5x)\): Using the derivative formula for \(\tan^{-1}(u)\): \[ \frac{d}{dx} \tan^{-1}(u) = \frac{1}{1 + u^2} \cdot \frac{du}{dx}, \] where \(u = 5x\). Thus, we have: \[ \frac{du}{dx} = 5. \] Now substituting \(u\) back into the derivative: \[ \frac{dy}{dx} = \frac{1}{1 + (5x)^2} \cdot 5 = \frac{5}{1 + 25x^2}. \] ### Final Answer Thus, the final result is: \[ \frac{dy}{dx} = \frac{5}{1 + 25x^2}. \]

To find \(\frac{dy}{dx}\) for the function \[ y = \tan^{-1}\left(\frac{4x}{1 + 5x^2}\right) + \tan^{-1}\left(\frac{2 + 3x}{3 - 2x}\right), \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if, tan^(-1)(x^2+y^2)=a

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

If y= "tan"^(-1) (4x)/(1+5x^(2)) + "tan"^(-1) (2 + 3x)/(3-2x) , then prove that (dy)/(dx)= (5)/(1+25x^(2))

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) for y=tan^(-1) sqrt(sec^2x/ cosec^2x)

Find dy/dx , if y = (1 - tan^2x)/(1 + tan^2x) .

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

Prove the following: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))