Home
Class 12
MATHS
"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(...

`"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x),` where `x!=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\), we can follow these steps: ### Step 1: Simplify the expression Let \(y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\). ### Step 2: Substitute \(x = \tan(\theta)\) To simplify the expression, we can use the substitution \(x = \tan(\theta)\). Then we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, the expression becomes: \[ y = \tan^{-1}\left(\frac{\sec(\theta)-1}{\tan(\theta)}\right) \] ### Step 3: Rewrite the expression Using the identity \(\sec(\theta) = \frac{1}{\cos(\theta)}\) and \(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\), we can rewrite: \[ y = \tan^{-1}\left(\frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}}\right) = \tan^{-1}\left(\frac{1 - \cos(\theta)}{\sin(\theta)}\right) \] ### Step 4: Use the half-angle formula Using the half-angle identity, we can express \(1 - \cos(\theta)\) as: \[ 1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right) \] Thus, we have: \[ y = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{\sin(\theta)}\right) \] And since \(\sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)\), we can simplify: \[ y = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\right) = \tan^{-1}\left(\frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)}\right) = \frac{\theta}{2} \] ### Step 5: Substitute back for \(\theta\) Since we have \(x = \tan(\theta)\), we can express \(\theta\) as: \[ \theta = \tan^{-1}(x) \] Thus: \[ y = \frac{1}{2}\tan^{-1}(x) \] ### Step 6: Differentiate with respect to \(x\) Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Final Answer Thus, we have: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)} \] ---

To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\), we can follow these steps: ### Step 1: Simplify the expression Let \(y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\). ### Step 2: Substitute \(x = \tan(\theta)\) To simplify the expression, we can use the substitution \(x = \tan(\theta)\). Then we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) for y=tan^(-1) sqrt(sec^2x/ cosec^2x)

Find (dy)/(dx) if y=(1)/(sqrt(x+1)-sqrt(x-1))

Find (dy)/(dx) if, tan^(-1)(x^2+y^2)=a

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x),)-a

2.Find (dy)/(dx) if y=(1-sqrt(x))(1+sqrt(x))

Find (dy)/(dx) for y=tan^(-1){sqrt((a-x)/(a+x))}," where " -a lt x lt a

1) Find (dy)/(dx) if y=sqrt(x+sqrt(x+1))

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a