Home
Class 12
MATHS
y=tan^(-1)(x/(1+sqrt(1-x^2)))...

`y=tan^(-1)(x/(1+sqrt(1-x^2)))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(2sqrt(1-x^(2)))`

`y=tan^(-1)""((x)/(1+sqrt(1-x^(2))))`
Put `x= sin theta.` Then,
`y=tan^(-1)((sintheta)/(1+sqrt(1-sin^(2)theta)))=tan^(-1)((sintheta)/(1+cos theta))`
`=tan^(-1)""(2sin""(theta)/(2)cos""(theta)/(2))/(2cos^(2)""(theta)/(2))=tan^(-1)tan""(theta)/(2)=(theta)/(2)`
`"So, "y=(sin^(-1)x)/(2)or(dy)/(dx)=(1)/(2sqrt(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t x , y = tan^(-1) (x /(sqrt(1+x^(2))-1))

Differentiate tan^(-1)x/(1+sqrt((1-x^2))) +{2tan^(-1)sqrt(((1-x)/(1+x)))}sinwdotrdottdotxdot

Differentiate tan^(-1) ((sqrt(1+x^(2))-1)/(x)) w.r.t. tan^(-1) ((x)/(sqrt(1-x^(2)))) .

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

Differentiate tan^(-1){x/(1+sqrt(1-x^2))},\ -1

Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with respect to tan^(-1) ( 2 x sqrt( 1 - x^(2)))/(1 - 2 x ^(2)) at x = 0

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

tan^-1 [(1)/(sqrt(x^2-1))]