Home
Class 12
MATHS
y=logsqrt(sinsqrt(e^(x)))...

`y=logsqrt(sinsqrt(e^(x)))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = \log(\sqrt{\sin(\sqrt{e^x})}) \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function using properties of logarithms and exponents: \[ y = \log(\sqrt{\sin(\sqrt{e^x})}) = \frac{1}{2} \log(\sin(\sqrt{e^x})) \] ### Step 2: Differentiate using the chain rule Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sin(\sqrt{e^x})} \cdot \frac{d}{dx}(\sin(\sqrt{e^x})) \] ### Step 3: Differentiate \( \sin(\sqrt{e^x}) \) Next, we need to differentiate \( \sin(\sqrt{e^x}) \) using the chain rule: \[ \frac{d}{dx}(\sin(\sqrt{e^x})) = \cos(\sqrt{e^x}) \cdot \frac{d}{dx}(\sqrt{e^x}) \] ### Step 4: Differentiate \( \sqrt{e^x} \) Now, we differentiate \( \sqrt{e^x} \): \[ \frac{d}{dx}(\sqrt{e^x}) = \frac{1}{2\sqrt{e^x}} \cdot e^x \] ### Step 5: Combine the derivatives Now we can substitute back into our expression: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sin(\sqrt{e^x})} \cdot \left( \cos(\sqrt{e^x}) \cdot \frac{1}{2\sqrt{e^x}} \cdot e^x \right) \] ### Step 6: Simplify the expression Now we simplify: \[ \frac{dy}{dx} = \frac{1}{4} \cdot \frac{e^x \cos(\sqrt{e^x})}{\sin(\sqrt{e^x}) \sqrt{e^x}} \] This can be written as: \[ \frac{dy}{dx} = \frac{1}{4} \cdot \frac{e^x \cos(\sqrt{e^x})}{\sin(\sqrt{e^x}) \sqrt{e^x}} = \frac{1}{4} \cdot \frac{e^x}{\sqrt{e^x}} \cdot \cot(\sqrt{e^x}) \] ### Final Result Thus, the final result is: \[ \frac{dy}{dx} = \frac{e^{x/2} \cot(\sqrt{e^x})}{4} \]

To differentiate the function \( y = \log(\sqrt{\sin(\sqrt{e^x})}) \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function using properties of logarithms and exponents: \[ y = \log(\sqrt{\sin(\sqrt{e^x})}) = \frac{1}{2} \log(\sin(\sqrt{e^x})) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=sqrt(sinsqrt(x))

Find (dy)/(dx) for the function: y=sqrt(sinsqrt(x))

Prove that f(x)=(1//x)logsqrt(x+sqrt(x^(2)+1)) is an even function.

Let f(x)=x^(2)-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cos sqrt(2))

If y=logsqrt(tanx) , write (dy)/(dx) .

Differentiate logsqrt((1+sinx)/(1-sinx)) with respect to x .

Differentiate logsqrt((1+sinx)/(1-sinx)) with respect to x :

Differentiate the following w.r.t.x. logsqrt((1+sinx)/(1-sinx))

Differentiate the following functions with respect to e^(sinsqrt(x))

Differentiate e^(sinsqrt(x)) with respect to x :