Home
Class 12
MATHS
y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]...

`y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1} \left[ \sqrt{(x - ax)} - \sqrt{(a - ax)} \right] \), we can follow these steps: ### Step 1: Simplify the expression inside the inverse sine function We start with: \[ y = \sin^{-1} \left[ \sqrt{(x - ax)} - \sqrt{(a - ax)} \right] \] Factor out \( x \) from the first square root: \[ y = \sin^{-1} \left[ \sqrt{x(1 - a)} - \sqrt{a(1 - x)} \right] \] ### Step 2: Use the sine inverse subtraction formula We can use the formula for the difference of two sine inverses: \[ \sin^{-1}(a) - \sin^{-1}(b) = \sin^{-1}(a) - \sin^{-1}(b) \] Let \( a = \sqrt{x(1 - a)} \) and \( b = \sqrt{a(1 - x)} \). Thus, \[ y = \sin^{-1} \left( \sqrt{x(1 - a)} \right) - \sin^{-1} \left( \sqrt{a(1 - x)} \right) \] ### Step 3: Differentiate both sides with respect to \( x \) Now we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left[ \sin^{-1} \left( \sqrt{x(1 - a)} \right) \right] - \frac{d}{dx} \left[ \sin^{-1} \left( \sqrt{a(1 - x)} \right) \right] \] Using the derivative of \( \sin^{-1}(u) \): \[ \frac{d}{dx} \sin^{-1}(u) = \frac{1}{\sqrt{1 - u^2}} \cdot \frac{du}{dx} \] ### Step 4: Calculate derivatives of the inner functions For the first term: Let \( u_1 = \sqrt{x(1 - a)} \): \[ \frac{du_1}{dx} = \frac{1}{2\sqrt{x(1 - a)}} \cdot (1 - a) \] For the second term: Let \( u_2 = \sqrt{a(1 - x)} \): \[ \frac{du_2}{dx} = \frac{1}{2\sqrt{a(1 - x)}} \cdot (-a) \] ### Step 5: Substitute back into the derivative Now substituting back: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - x(1 - a)}} \cdot \frac{(1 - a)}{2\sqrt{x(1 - a)}} - \frac{1}{\sqrt{1 - a(1 - x)}} \cdot \frac{-a}{2\sqrt{a(1 - x)}} \] ### Step 6: Simplify the expression This can be simplified further, but the key steps have been outlined. The final expression will depend on the specific values of \( a \) and \( x \). ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) can be expressed as: \[ \frac{dy}{dx} = \frac{(1 - a)}{2\sqrt{x(1 - a)(1 - x(1 - a))}} + \frac{a}{2\sqrt{a(1 - x)(1 - a(1 - x))}} \]

To find the derivative \( \frac{dy}{dx} \) for the function \( y = \sin^{-1} \left[ \sqrt{(x - ax)} - \sqrt{(a - ax)} \right] \), we can follow these steps: ### Step 1: Simplify the expression inside the inverse sine function We start with: \[ y = \sin^{-1} \left[ \sqrt{(x - ax)} - \sqrt{(a - ax)} \right] \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

The complete solution set of the equation sin^(-1) sqrt((1+x)/(2))-sqrt(2-x)=cot^(-1)(tan sqrt(2-x))-sin^(-1) sqrt((1-x)/(2)) is :