Home
Class 12
MATHS
Find (dy)/(dx) for the functions: y=(x+s...

Find `(dy)/(dx)` for the functions: `y=(x+sinx)/(x+cosx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \frac{x + \sin x}{x + \cos x}\), we will use the quotient rule for differentiation. The quotient rule states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = x + \sin x\) and \(v = x + \cos x\). ### Step-by-step Solution: 1. **Identify \(u\) and \(v\)**: - Let \(u = x + \sin x\) - Let \(v = x + \cos x\) 2. **Differentiate \(u\) and \(v\)**: - \(\frac{du}{dx} = \frac{d}{dx}(x + \sin x) = 1 + \cos x\) - \(\frac{dv}{dx} = \frac{d}{dx}(x + \cos x) = 1 - \sin x\) 3. **Apply the Quotient Rule**: - Using the quotient rule: \[ \frac{dy}{dx} = \frac{(x + \cos x)(1 + \cos x) - (x + \sin x)(1 - \sin x)}{(x + \cos x)^2} \] 4. **Expand the Numerator**: - Expanding the first term: \[ (x + \cos x)(1 + \cos x) = x(1 + \cos x) + \cos x(1 + \cos x) = x + x \cos x + \cos x + \cos^2 x \] - Expanding the second term: \[ (x + \sin x)(1 - \sin x) = x(1 - \sin x) + \sin x(1 - \sin x) = x - x \sin x + \sin x - \sin^2 x \] 5. **Combine the Terms**: - Now substituting back into the numerator: \[ \text{Numerator} = (x + x \cos x + \cos x + \cos^2 x) - (x - x \sin x + \sin x - \sin^2 x) \] - Simplifying this: \[ = x + x \cos x + \cos x + \cos^2 x - x + x \sin x - \sin x + \sin^2 x \] - The \(x\) terms cancel out: \[ = x \cos x + x \sin x + \cos x + \cos^2 x - \sin x + \sin^2 x \] 6. **Combine Like Terms**: - Noticing that \(\cos^2 x + \sin^2 x = 1\): \[ = x(\cos x + \sin x) + \cos x - \sin x + 1 \] 7. **Final Expression**: - Therefore, we have: \[ \frac{dy}{dx} = \frac{x(\cos x + \sin x) + \cos x - \sin x + 1}{(x + \cos x)^2} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{x(\cos x + \sin x) + \cos x - \sin x + 1}{(x + \cos x)^2} \]

To find \(\frac{dy}{dx}\) for the function \(y = \frac{x + \sin x}{x + \cos x}\), we will use the quotient rule for differentiation. The quotient rule states that if \(y = \frac{u}{v}\), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \(u = x + \sin x\) and \(v = x + \cos x\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) of the functions given by y^x=x^y

Find dy/dx for the function: f(x)=e^x(sinx-cosx) .

Find (dy)/(dx) of the functions given by (cosx)^y=(cosy)^x

Find (dy)/(dx) of the functions given by x^y+y^x=1

Find (dy)/(dx) of the functions given by x y=e^((x-y))

Evaluate int(x+sinx)/(1+cosx)dx

Evaluate: int(x-sinx)/(1-cosx)dx

Evaluate: int(1-sinx)/(x+cosx)dx

Evaluate: int(x-sinx)/(1-cosx)dx

Find (dy)/(dx) if, sinx y+cos(x+y)=1