Home
Class 12
MATHS
If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)) t...

If `y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n))` then `(dy)/(dx)` at `x=0` is

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x=0\) for the function \[ y = (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}), \] we will first differentiate \(y\) with respect to \(x\) and then evaluate the derivative at \(x=0\). ### Step 1: Write down the function The function is given as: \[ y = (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}). \] ### Step 2: Differentiate using the product rule To differentiate \(y\), we will use the product rule. The product rule states that if \(y = u_1 u_2 u_3 \cdots u_k\), then \[ \frac{dy}{dx} = u_1' u_2 u_3 \cdots u_k + u_1 u_2' u_3 \cdots u_k + \cdots + u_1 u_2 u_3 \cdots u_k'. \] In our case, we have \(k = n+1\) terms: \(u_1 = 1+x\), \(u_2 = 1+x^2\), ..., \(u_{n+1} = 1+x^{2^n}\). ### Step 3: Differentiate each term The derivative of each term is: - \(u_1' = 1\) - \(u_2' = 2x\) - \(u_3' = 4x^3\) - ... - \(u_{n+1}' = 2^n x^{2^n - 1}\) ### Step 4: Apply the product rule Using the product rule, we can express \(\frac{dy}{dx}\) as: \[ \frac{dy}{dx} = (1)(1+x^2)(1+x^4)\cdots(1+x^{2^n}) + (1+x)(2x)(1+x^4)\cdots(1+x^{2^n}) + (1+x)(1+x^2)(4x^3)(1+x^4)\cdots(1+x^{2^n}) + \ldots \] ### Step 5: Evaluate at \(x=0\) Now we will evaluate \(\frac{dy}{dx}\) at \(x=0\): 1. For the first term: \[ (1)(1+0^2)(1+0^4)\cdots(1+0^{2^n}) = 1. \] 2. For the second term: \[ (1+0)(2 \cdot 0)(1+0^4)\cdots(1+0^{2^n}) = 0. \] 3. For the third term: \[ (1+0)(1+0^2)(4 \cdot 0^3)(1+0^4)\cdots(1+0^{2^n}) = 0. \] Continuing this way, all terms involving \(x\) will vanish, and we will only have the first term contributing to the derivative. ### Final Result Thus, we find that: \[ \frac{dy}{dx} \bigg|_{x=0} = 1. \]

To find \(\frac{dy}{dx}\) at \(x=0\) for the function \[ y = (1+x)(1+x^2)(1+x^4)\cdots(1+x^{2^n}), \] we will first differentiate \(y\) with respect to \(x\) and then evaluate the derivative at \(x=0\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

If y=(1+x)(1+x^2)(1+x^4)(1+x^8).........(1+x^(2n)) , find (dy)/(dx) .

If y=(1+x)(1+x^2)(1+x^4)(1+x^8)...........(1+x^(2n)) ,find dy//dx at x=0

If t a n y=(2^x)/(1+2^(2x+1)),t h e n(dy)/(dx) at x=0 is

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is

If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0

If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

If y=(1+1/(x^2))/(1-1/(x^2)) , then (dy)/(dx) = a. -(4x)/((x^2-1)^2) b. -(4x)/(x^2-1) c. (1-x^2)/(4x) d. (4x)/(x^2-1)