Home
Class 12
MATHS
xsqrt(1+y)+ysqrt(1+x)=0 then (dy)/(dx)=...

`xsqrt(1+y)+ysqrt(1+x)=0` then `(dy)/(dx)=`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the equation \(x\sqrt{1+y} + y\sqrt{1+x} = 0\), we will follow these steps: ### Step 1: Rearranging the equation We start with the given equation: \[ x\sqrt{1+y} + y\sqrt{1+x} = 0 \] We can rearrange this to isolate one term: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If xsqrt(1+y)+ysqrt(1+x)=0, find ("dy")/("dx") . To prove (dy)/(dx)= -1/(1+x)^2

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

If xsqrt(1+y)+ysqrt(1+x)=0, prove that (dy)/(dx)=-1/((x+1)^2)

"If "xsqrt(1+y)+ysqrt(1+x)=0," prove that "(dy)/(dx)=-(1)/((x+1)^(2)).

If y= ((sqrt(x)+1)(x^(2)-sqrt(x)))/(xsqrt(x)+x+sqrt(x)), Prove that (dy)/(dx) = 1 .

If ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,then (dy)/(dx)=

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

Statement 1: If e^(xy)+ln(xy)+cos(xy)+5=0, then (dy)/(dx)=-y/x . Statement 2: d/(dx)(xy)=0,y is a function of x implies(dy)/(dx)=-y/x .

If ysqrt(1-x^2)+xsqrt(1-y^2)=1," prove that "(dy)/(dx)= - sqrt((1-y^2)/(1-x^2))dot