Home
Class 12
MATHS
If y=btan^(-1)(x/a+tan^(-1)y/x),find (dy...

If `y=btan^(-1)(x/a+tan^(-1)y/x),find (dy)/(dx)'

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the given equation \( y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \) with respect to \( x \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \] 2. **Differentiate both sides with respect to \( x \)**: Using implicit differentiation, we differentiate the left side: \[ \frac{dy}{dx} = b \cdot \frac{d}{dx} \left[\tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right)\right] \] 3. **Use the chain rule**: The derivative of \( \tan^{-1}(u) \) is \( \frac{1}{1 + u^2} \cdot \frac{du}{dx} \). Let: \[ u = \frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right) \] Then: \[ \frac{du}{dx} = \frac{1}{a} + \frac{d}{dx}\left[\tan^{-1}\left(\frac{y}{x}\right)\right] \] 4. **Differentiate \( \tan^{-1}\left(\frac{y}{x}\right) \)**: Using the chain rule again: \[ \frac{d}{dx}\left[\tan^{-1}\left(\frac{y}{x}\right)\right] = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{d}{dx}\left(\frac{y}{x}\right) \] Using the quotient rule: \[ \frac{d}{dx}\left(\frac{y}{x}\right) = \frac{x \frac{dy}{dx} - y}{x^2} \] 5. **Combine the derivatives**: Now substituting back: \[ \frac{du}{dx} = \frac{1}{a} + \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{x \frac{dy}{dx} - y}{x^2} \] 6. **Substituting \( u \) back into the derivative**: Now we have: \[ \frac{dy}{dx} = b \cdot \frac{1}{1 + u^2} \cdot \frac{du}{dx} \] 7. **Simplifying the expression**: Substitute \( u \) back into the equation and simplify the expression as needed. 8. **Rearranging to isolate \( \frac{dy}{dx} \)**: After simplification, we can rearrange the equation to solve for \( \frac{dy}{dx} \). ### Final Expression: After performing all the calculations and simplifications, we arrive at: \[ \frac{dy}{dx} = \frac{1}{a} - \frac{y}{x^2 + y^2} \cdot \frac{1}{b} \cdot \left(\frac{y}{b} - \frac{x}{x^2 + y^2}\right) \]

To solve the problem, we need to differentiate the given equation \( y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \) with respect to \( x \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=btan^(-1)(x/a+tan^(-1) y /x),f i nd (dy)/(dx)dot

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .

y=1/(1+x) find dy/dx

If y=e^((tan^(-1)x) then find (dy)/(dx)

If y=(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x) , find ((dy)/(dx)])_(x=-1) 0 (b) 1 (c) 2//pi (d) -1

If y=sin^(-1)x+cos^(-1)x ,\ find (dy)/(dx) .

If tan(x+y)+tan(x-y)=1 , find (dy)/(dx) .

If y=x^x+x^(1//x) , find (dy)/(dx)

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .