Home
Class 12
MATHS
"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)...

`"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|.`
Find the value of f'(0).

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(0) \) for the given function \[ f(x) = \begin{vmatrix} \cos(x + x^2) & \sin(x + x^2) & -\cos(x + x^2) \\ \sin(x - x^2) & \cos(x - x^2) & \sin(x - x^2) \\ \sin(2x) & 0 & \sin(2x^2) \end{vmatrix} \] we will follow these steps: ### Step 1: Evaluate \( f(0) \) Substituting \( x = 0 \): \[ f(0) = \begin{vmatrix} \cos(0 + 0^2) & \sin(0 + 0^2) & -\cos(0 + 0^2) \\ \sin(0 - 0^2) & \cos(0 - 0^2) & \sin(0 - 0^2) \\ \sin(2 \cdot 0) & 0 & \sin(2 \cdot 0^2) \end{vmatrix} \] This simplifies to: \[ f(0) = \begin{vmatrix} \cos(0) & \sin(0) & -\cos(0) \\ \sin(0) & \cos(0) & \sin(0) \\ \sin(0) & 0 & \sin(0) \end{vmatrix} \] Calculating the values: \[ f(0) = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} \] The determinant of a matrix with a row of zeros is 0. Thus, \[ f(0) = 0 \] ### Step 2: Differentiate \( f(x) \) To find \( f'(x) \), we will differentiate the determinant with respect to \( x \). We can use the Leibniz rule for differentiation of determinants: \[ f'(x) = \frac{d}{dx} \begin{vmatrix} a_{11}(x) & a_{12}(x) & a_{13}(x) \\ a_{21}(x) & a_{22}(x) & a_{23}(x) \\ a_{31}(x) & a_{32}(x) & a_{33}(x) \end{vmatrix} \] Using the formula for the derivative of a determinant: \[ f'(x) = \begin{vmatrix} \frac{da_{11}}{dx} & a_{12} & a_{13} \\ \frac{da_{21}}{dx} & a_{22} & a_{23} \\ \frac{da_{31}}{dx} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & \frac{da_{12}}{dx} & a_{13} \\ a_{21} & \frac{da_{22}}{dx} & a_{23} \\ a_{31} & \frac{da_{32}}{dx} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \frac{da_{13}}{dx} \\ a_{21} & a_{22} & \frac{da_{23}}{dx} \\ a_{31} & a_{32} & \frac{da_{33}}{dx} \end{vmatrix} \] ### Step 3: Evaluate \( f'(0) \) Now we need to evaluate \( f'(0) \). We will find the derivatives of each element in the determinant at \( x = 0 \): 1. \( \frac{da_{11}}{dx} = -\sin(0) - 2 \cdot 0 \cdot \cos(0) = 0 \) 2. \( \frac{da_{12}}{dx} = \cos(0) + 2 \cdot 0 \cdot -\sin(0) = 1 \) 3. \( \frac{da_{13}}{dx} = \sin(0) + 2 \cdot 0 \cdot \cos(0) = 0 \) 4. \( \frac{da_{21}}{dx} = \cos(0) - 2 \cdot 0 \cdot \sin(0) = 1 \) 5. \( \frac{da_{22}}{dx} = -\sin(0) + 2 \cdot 0 \cdot \cos(0) = 0 \) 6. \( \frac{da_{23}}{dx} = \cos(0) - 2 \cdot 0 \cdot \sin(0) = 1 \) 7. \( \frac{da_{31}}{dx} = 2 \cos(0) = 2 \) 8. \( \frac{da_{32}}{dx} = 0 \) 9. \( \frac{da_{33}}{dx} = 2 \cdot 0 \cdot \cos(0) = 0 \) Now substituting these into the determinant formula, we will find \( f'(0) \): \[ f'(0) = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} \] Calculating these determinants: 1. The first determinant is \( 0 \). 2. The second determinant is also \( 0 \). 3. The third determinant is \( 1 \). Thus, \[ f'(0) = 0 + 0 + 1 = 1 \] ### Final Result The value of \( f'(0) \) is: \[ \boxed{1} \]

To find the value of \( f'(0) \) for the given function \[ f(x) = \begin{vmatrix} \cos(x + x^2) & \sin(x + x^2) & -\cos(x + x^2) \\ \sin(x - x^2) & \cos(x - x^2) & \sin(x - x^2) \\ \sin(2x) & 0 & \sin(2x^2) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|[cos(x+x^2),sin(x+x^2),-cos(x+x^2)],[sin(x-x^2),cos(x-x^2), sin(x-x^2)],[sin2x,0,sin(2x^2)]| . Find the value of f^(prime)(0) .

f(x)=|{:(cos x, x, 1),(2sin x, x^(2), 2x),(tan x, x, 1):}|." Then find the vlue of lim_(x to 0) (f'(x))/(x).

If f(x)=|"cos"(x+x^2)"sin"(x+x^2)-"cos"(x+x^2)"sin"(x-x^2)"cos"(x-x^2)sin(x-x^2)sin2x0sin2x^2|,t h e n f(-2)=0 (b) f^(prime)(-1/2)=0 f^(prime)(-1)=-2 (d) f^(0)=4

int (cos^(2)x+sin 2x)/((2 cos x- sin x)^(2))dx

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

(i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| . (ii) Let A,B and C be the angles of triangle such that Agt=Bgt=C. Find the minimum value of Delta where Delta=|{:(sin^(2)A,sinAcosA,cos^(2)A),(sin^(2) B,sinBcosB,cos^(2)B),(sin^(2)C,sinCcosC,cos^(2)C):}| .

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then