Home
Class 12
MATHS
If y=log (1+ sin x), prove that y(4)+y(...

If y=log (1+ sin x), prove that `y_(4)+y_(3)y_(1)+y_(2)^(2)=0`.

Text Solution

AI Generated Solution

To prove that \( y^{(4)} + y^{(3)}y^{(1)} + (y^{(2)})^2 = 0 \) for \( y = \log(1 + \sin x) \), we will find the first four derivatives of \( y \) and substitute them into the equation. ### Step 1: Find the first derivative \( y' \) Given: \[ y = \log(1 + \sin x) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=(sin^(-1)x)^2 , prove that (1-x^2)y_2-x y_1-2=0 .

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If y=log(1+cosx) , prove that (d^3y)/(dx^3)+(d^2y)/(dx^2)dot(dy)/(dx)=0 .

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)

If y=(sin^(-1)x)^2 ,prove that (1-x^2)y_2-x y_1-2=0.

If y=(a x+b)/(x^2+c), prove that (2x y_1+y)y_3=3(x y_2+y_1)y_2.

If y=3cos(logx)+4sin(logx),\ prove that x^2y_2+x\ y_1+y=0 .

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

If y= y=sqrt((1-sin 2x )/(1+sin 2 x)) prove that (dy)/(dx)+sec^2(pi/4-x)=0.

If A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3)) are vertices of an equilateral triangle whose each side is equal to a, then prove that |(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)| is equal to