Home
Class 12
MATHS
If f(x)=|[x^n, n!, 2; cosx, cos((npi)/2)...

If `f(x)=|[x^n, n!, 2; cosx, cos((npi)/2), 4; sinx ,sin((npi)/2), 8]|` then find the value of `(d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the nth derivative of the function \( f(x) \) at \( x = 0 \), where \[ f(x) = \left| \begin{array}{ccc} x^n & n! & 2 \\ \cos x & \cos\left(\frac{n\pi}{2}\right) & 4 \\ \sin x & \sin\left(\frac{n\pi}{2}\right) & 8 \end{array} \right| \] ### Step 1: Evaluate the Determinant The determinant can be calculated using the formula for a 3x3 determinant: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our determinant: \[ f(x) = x^n \left( \cos\left(\frac{n\pi}{2}\right) \cdot 8 - 4 \cdot \sin\left(\frac{n\pi}{2}\right) \right) - n! \left( \cos x \cdot 8 - 4 \cdot \sin x \right) + 2 \left( \cos x \cdot \sin\left(\frac{n\pi}{2}\right) - \sin x \cdot \cos\left(\frac{n\pi}{2}\right) \right) \] ### Step 2: Differentiate \( f(x) \) Now, we will differentiate \( f(x) \) with respect to \( x \) using the properties of determinants. The differentiation of a determinant can be done by differentiating each row or column, and we will apply this property iteratively. 1. The first derivative \( f'(x) \) will involve differentiating \( x^n \), \( \cos x \), and \( \sin x \). 2. The second derivative \( f''(x) \) will involve differentiating the results of \( f'(x) \), and so on until we reach the nth derivative. ### Step 3: Find \( f^{(n)}(x) \) After differentiating \( n \) times, we will have: \[ f^{(n)}(x) = n! \cdot \left( \text{some function of } x \right) \] ### Step 4: Evaluate at \( x = 0 \) Now we need to evaluate \( f^{(n)}(0) \): \[ f^{(n)}(0) = n! \cdot \left( \text{value of the function at } x = 0 \right) \] Substituting \( x = 0 \) into the determinant gives us: \[ f(0) = \left| \begin{array}{ccc} 0 & n! & 2 \\ 1 & \cos\left(\frac{n\pi}{2}\right) & 4 \\ 0 & \sin\left(\frac{n\pi}{2}\right) & 8 \end{array} \right| \] ### Step 5: Simplify the Determinant The determinant simplifies to: \[ = 0 \cdot \left( \cos\left(\frac{n\pi}{2}\right) \cdot 8 - 4 \cdot \sin\left(\frac{n\pi}{2}\right) \right) - n! \cdot (1 \cdot 8 - 4 \cdot 0) + 2 \cdot (1 \cdot \sin\left(\frac{n\pi}{2}\right) - 0 \cdot \cos\left(\frac{n\pi}{2}\right)) \] This results in: \[ = -n! \cdot 8 + 2 \cdot \sin\left(\frac{n\pi}{2}\right) \] ### Step 6: Final Result Since two rows (or two columns) are similar in the determinant, the determinant evaluates to zero: \[ f^{(n)}(0) = 0 \] Thus, the value of \( \frac{d^n}{dx^n} f(x) \bigg|_{x=0} = 0 \).

To solve the problem, we need to evaluate the nth derivative of the function \( f(x) \) at \( x = 0 \), where \[ f(x) = \left| \begin{array}{ccc} x^n & n! & 2 \\ \cos x & \cos\left(\frac{n\pi}{2}\right) & 4 \\ \sin x & \sin\left(\frac{n\pi}{2}\right) & 8 \end{array} \right| ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|x^nn !2cosxcos(npi)/2 4sinxsin(npi)/2 8| then find the value of (d^n)/(dx^n)([f(x)])_(x=0)dot(n in z)dot

if =|{:(x^(n),,n!,,2),(cos x,,cos.(npi)/(2),,4),(sin x,,sin .(npi)/(2),,8):}|, then find the value of (d^(n))/(dx^(n)) [f(x)]_(x=0) .(n in z).

If f(x)=|(x^n, sinx, cosx),(n!, sin((npi)/2), cos((npi)/2)),(a, a^2,a^3)| , then show that d^n/dx^n [f(x)] at x=0 is 0

If f(x)=|{:(x^(n),sinx,cosx),(n!,"sin"(npi)/(2),"cos"(npi)/(2)),(a,a^(2),a^(3)):}| , then the value of (d^(n))/(dx^(n))(f(x))" at "x=0" for "n=2m+1 is

Let "f(x)"=|{:(pi^n,sinpix,cospix),((-1)^(n)!,-sin((npi)/2),-cos((npi)/2)),(-1,1/sqrt2,sqrt3/2):}| Then value or d^n/(dx^n)["f(x)"]"at "x=1" is "

If x ne (npi)/2, n in I and (cosx)^(sin^(2)x-3sinx+2)=1 , then find the general solutions of x.

If x!=(npi)/2,\ n\ in I and ( cosx )^(sin ^2x-3sinx+2)=1, then find the general solution of xdot

f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|underset(x=0) is nonzero is

f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for which (d^(n))/(dx^(n))f(x)|underset(x=0) is nonzero is

If cos x=-3/5a n d\ x lies in IInd quadrant, find the values of sin2x\ a n dsin(x/2)dot