Home
Class 12
MATHS
If x=acos^3theta,y=bsin^3theta,fin d(d^3...

If `x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3)` at `theta=0.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the third derivative of \( y \) with respect to \( x \) at \( \theta = 0 \), we start with the given equations: 1. \( x = a \cos^3 \theta \) 2. \( y = b \sin^3 \theta \) We need to find \( \frac{d^3y}{dx^3} \) at \( \theta = 0 \). ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Using the chain rule, we can express \( \frac{dy}{dx} \) as: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] **Calculating \( \frac{dy}{d\theta} \):** \[ y = b \sin^3 \theta \implies \frac{dy}{d\theta} = 3b \sin^2 \theta \cos \theta \] **Calculating \( \frac{dx}{d\theta} \):** \[ x = a \cos^3 \theta \implies \frac{dx}{d\theta} = -3a \cos^2 \theta \sin \theta \] Now substituting these into the derivative: \[ \frac{dy}{dx} = \frac{3b \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} \] This simplifies to: \[ \frac{dy}{dx} = -\frac{b}{a} \cdot \frac{\sin^2 \theta}{\cos^2 \theta} = -\frac{b}{a} \tan^2 \theta \] ### Step 2: Evaluate \( \frac{dy}{dx} \) at \( \theta = 0 \) At \( \theta = 0 \): \[ \sin(0) = 0 \quad \text{and} \quad \cos(0) = 1 \] Thus, \[ \frac{dy}{dx} = -\frac{b}{a} \tan^2(0) = -\frac{b}{a} \cdot 0 = 0 \] ### Step 3: Find the second derivative \( \frac{d^2y}{dx^2} \) Using the formula for the second derivative: \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \frac{dy}{dx} \right) = \frac{d}{d\theta} \left( \frac{dy}{dx} \right) \cdot \frac{d\theta}{dx} \] First, we need \( \frac{d\theta}{dx} \): \[ \frac{d\theta}{dx} = \frac{1}{\frac{dx}{d\theta}} = \frac{-1}{3a \cos^2 \theta \sin \theta} \] Now, we differentiate \( \frac{dy}{dx} \): \[ \frac{d}{d\theta} \left( -\frac{b}{a} \tan^2 \theta \right) = -\frac{b}{a} \cdot 2 \tan \theta \sec^2 \theta \] Thus, \[ \frac{d^2y}{dx^2} = -\frac{b}{a} \cdot 2 \tan \theta \sec^2 \theta \cdot \frac{-1}{3a \cos^2 \theta \sin \theta} \] ### Step 4: Evaluate \( \frac{d^2y}{dx^2} \) at \( \theta = 0 \) At \( \theta = 0 \): \[ \tan(0) = 0 \quad \text{and} \quad \sec(0) = 1 \] Thus, \[ \frac{d^2y}{dx^2} = -\frac{b}{a} \cdot 2 \cdot 0 \cdot 1 \cdot \frac{-1}{3a \cdot 1 \cdot 0} \text{ (undefined)} \] ### Step 5: Conclusion for the third derivative \( \frac{d^3y}{dx^3} \) Since \( \frac{d^2y}{dx^2} \) is undefined at \( \theta = 0 \), it follows that \( \frac{d^3y}{dx^3} \) also does not exist at \( \theta = 0 \). Thus, we conclude: \[ \frac{d^3y}{dx^3} \text{ does not exist at } \theta = 0. \]

To solve the problem of finding the third derivative of \( y \) with respect to \( x \) at \( \theta = 0 \), we start with the given equations: 1. \( x = a \cos^3 \theta \) 2. \( y = b \sin^3 \theta \) We need to find \( \frac{d^3y}{dx^3} \) at \( \theta = 0 \). ### Step 1: Find the first derivative \( \frac{dy}{dx} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=asec^3theta,y=atan^3theta, find (d^2y)/(dx^2) at theta=pi/4

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=asec^3theta and y=atan^3theta, find (dy)/(dx) at theta=pi/3

If x=asec^3theta and y=atan^3theta , find (dy)/(dx) at theta=pi/3dot

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

If x=a(1-cos^3theta),y=asin^3theta,"prove that"(d^2y)/(dx^2)=(32)/(27a) "at" theta=pi/6dot

If x=a\ s e c^3theta and y=a\ t a n^3theta , find (dy)/(dx) at theta=pi/3

If x=a(1-cos^3theta) , y=a\ sin^3theta , prove that (d^2y)/(dx^2)=(32)/(27\ a) at theta=pi/6 .

If x=acos^3theta,y=a sin^3theta, then find the value of d2y/dx2 at θ=π/6

If x=a\ cos^3theta,\ \ y=a\ sin^3theta , then sqrt(1+((dy)/(dx))^2)= (a) t a n^2theta (b) s e c^2theta (c) sectheta (d) |sectheta|