Home
Class 12
MATHS
" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-si...

`" If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))](0ltxltpi//2)," then "(dy)/(dx)=`

A

`(1)/(2)`

B

`(2)/(3)`

C

3

D

1

Text Solution

AI Generated Solution

To solve the problem step by step, we will find the derivative of the function given by: \[ y = \cot^{-1} \left( \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} \right) \] ### Step 1: Simplify the expression inside the cotangent inverse function We start by multiplying and dividing the expression by \(\sqrt{1 + \sin x} + \sqrt{1 - \sin x}\): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|24 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

If y="tan"^(-1)((sqrt(1+sinx)+sqrt(1-sinx)))/((sqrt(1+sinx)-sqrt(1-sinx)))," find "(dy)/(dx).

int(sinx)/(sqrt(1+sinx))dx

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

If y=cot^(-1){(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))}. Show that (dy)/(dx) is independent of x.

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2, x in (0,pi/4)

The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqrt(1+sinx))} is (0 lt x lt (pi)/(2))

CENGAGE ENGLISH-DIFFERENTIATION-Execrises
  1. If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a)-(cosx+si...

    Text Solution

    |

  2. Instead of the usual definition of derivative Df(x), if we define a ne...

    Text Solution

    |

  3. " If "y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx...

    Text Solution

    |

  4. if y=((a-x)sqrt(a-x)-(b-x)sqrt(x-b))/(sqrt(a-x)+sqrt(x-b)) then dy/dx ...

    Text Solution

    |

  5. the derivative of y=(1-x)(2-x)..........(n-x) at x=1 is equal to

    Text Solution

    |

  6. " If "y=sqrt((1-x)/(1+x))," then "(1-x^(2))(dy)/(dx) is equal to

    Text Solution

    |

  7. If y=(sqrt(a+x)-sqrt(a-x))/(sqrt(a+x)+sqrt(a-x)),t h e n(dy)/(dx)i se...

    Text Solution

    |

  8. Let u(x) a n dv(x) be differentiable functions such that (u(x))/(v(x))...

    Text Solution

    |

  9. If sin^(-1)((x^2-y^2)/(x^2+y^2))=loga ,t h e n(dy)/(dx) is equal to x/...

    Text Solution

    |

  10. Let h(x) be differentiable for all x and let f(x)=(k x+e^x)h(x) , wher...

    Text Solution

    |

  11. If lim(trarrx)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2...

    Text Solution

    |

  12. If f(0)=0,f^(prime)(0)=2, then the derivative of y=f(f(f(x))) at x=0 i...

    Text Solution

    |

  13. If f(x)=sqrt(1+cos^2(x^2)),t h e nf^(prime)((sqrt(pi))/2) is (sqrt(pi)...

    Text Solution

    |

  14. d/dx cos^-1 sqrtcos x is equal to

    Text Solution

    |

  15. if y = tan^-1(2^x/(1+2^(2x+1))) then dy/dx at x =0 is

    Text Solution

    |

  16. If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b...

    Text Solution

    |

  17. if y=log(sinx) tanx then ((dy)/(dx)) (pi/4) is

    Text Solution

    |

  18. d/(dx)[sin^2cot^(- 1)sqrt((1-x)/(1+x))] is

    Text Solution

    |

  19. The differential coefficient of f(loge x) w.r.t. x, where f(x) = loge...

    Text Solution

    |

  20. if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

    Text Solution

    |