Home
Class 12
MATHS
"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-...

`"If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4),` then the value of `f'''(1)+f''(2)+f'(3)+f'(4)` equals

A

0

B

50

C

324

D

648

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( f'''(1) \), \( f''(2) \), \( f'(3) \), and \( f'(4) \) for the function \[ f(x) = (x-1)^4 (x-2)^3 (x-3)^2 (x-4) \] and then sum these values. ### Step 1: Calculate \( f'''(1) \) 1. **Identify the term**: The term \( (x-1)^4 \) will contribute to \( f'''(1) \). 2. **Differentiate three times**: When we differentiate \( f(x) \) three times, the \( (x-1)^4 \) term will still be present, but the other terms will vanish when evaluated at \( x = 1 \) because they will contain factors like \( (1-2) \), \( (1-3) \), and \( (1-4) \) which are all negative and will yield zero. 3. **Evaluate**: Thus, \( f'''(1) = 0 \). ### Step 2: Calculate \( f''(2) \) 1. **Identify the term**: The term \( (x-2)^3 \) will contribute to \( f''(2) \). 2. **Differentiate two times**: When we differentiate \( f(x) \) two times, the \( (x-2)^3 \) term will still be present, but the other terms will vanish when evaluated at \( x = 2 \). 3. **Evaluate**: Thus, \( f''(2) = 0 \). ### Step 3: Calculate \( f'(3) \) 1. **Identify the term**: The term \( (x-3)^2 \) will contribute to \( f'(3) \). 2. **Differentiate once**: When we differentiate \( f(x) \) once, the \( (x-3)^2 \) term will still be present, but the other terms will vanish when evaluated at \( x = 3 \). 3. **Evaluate**: Thus, \( f'(3) = 0 \). ### Step 4: Calculate \( f'(4) \) 1. **Identify the term**: The term \( (x-4) \) will contribute to \( f'(4) \). 2. **Differentiate once**: When we differentiate \( f(x) \) once, the \( (x-4) \) term will contribute a non-zero value. 3. **Evaluate**: We need to calculate \( f'(4) \): \[ f'(x) = 4(x-1)^3(x-2)^3(x-3)^2 + 3(x-1)^4(x-2)^2(x-3)^2 + 2(x-1)^4(x-2)^3(x-3) + (x-1)^4(x-2)^3 \] Evaluating at \( x = 4 \): \[ f'(4) = 4(3)^3(2)^3(1)^2 + 3(3)^4(2)^2(1)^2 + 2(3)^4(2)^3(1) + (3)^4(2)^3 \] \[ = 4 \cdot 27 \cdot 8 \cdot 1 + 3 \cdot 81 \cdot 4 \cdot 1 + 2 \cdot 81 \cdot 8 + 81 \cdot 8 \] \[ = 864 + 972 + 162 + 648 = 2646 \] ### Final Calculation Now we sum the results: \[ f'''(1) + f''(2) + f'(3) + f'(4) = 0 + 0 + 0 + 2646 = 2646 \] ### Conclusion The final answer is: \[ \boxed{2646} \]

To solve the problem, we need to find the values of \( f'''(1) \), \( f''(2) \), \( f'(3) \), and \( f'(4) \) for the function \[ f(x) = (x-1)^4 (x-2)^3 (x-3)^2 (x-4) \] and then sum these values. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|24 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f (x )= (x-1) ^(4) (x-2) ^(3) (x-3) ^(2) then the value of f '(1) +f''(2) +f''(3) is:

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If f(x)=3x^(2)-2x+4,f(-2)=

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :

If f(x)=3x^(2)+4x-1 , then find the approximate value of f(3.1) .

Let f : W-> W be a given function satisfying f(x) = f(x-1)+f(x-2) for x<=2 .If f(0)=0 and f(1)=1 , ther find the value of f(2) + f(3) + f(4) + f(5) + f(6) .

If a function f:RtoR is defined by f(x){{:(2x,xgt3),(x^(2),1lexle3),(3x,xlt1):} Then the value of f(-1)+f(2)+f(4) is

If f(x)=sin^(-1)(3x-4x^(3)). Then answer the following The value of f'((1)/(sqrt2)) , is

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f'(1)+f''(2)+f'''(3) is

If f(x)=4x-x^2, x in R , then write the value of f(a+1)-f(a-1)dot

CENGAGE ENGLISH-DIFFERENTIATION-Execrises
  1. Let y=1n(1+cosx)^2 . Then the value of (d^2y)/(dx^2)+2/(e^(y/2)) equal...

    Text Solution

    |

  2. x=t cos t, y =t + sin t. Then (d^(2)x)/(dy^(2))" at "t=(pi)/(2) is

    Text Solution

    |

  3. "If "f(x)=(x-1)^(4)(x-2)^(3)(x-3)^(2)(x-4), then the value of f'''(1)+...

    Text Solution

    |

  4. let y=t^(10)+1, and x=t^8+1, then (d^2y)/(dx^2) is

    Text Solution

    |

  5. If x = log p and y=(1)/(p), then

    Text Solution

    |

  6. "If "x=phi(t), y=psi(t)," then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |

  7. If f(x) = x^(4)tan (x^(3))-x" In "(1+x^(2)), then the value of (d^(4)(...

    Text Solution

    |

  8. If graph of y=f(x) is symmetrical about the y-axis and that of y=g(x) ...

    Text Solution

    |

  9. Let g(x) be the inverse of an invertible function f(x), which is diffe...

    Text Solution

    |

  10. f(x)=e^(x)-e^(-x)-2 sin x -(2)/(3)x^(3). Then the least value of n for...

    Text Solution

    |

  11. Let y=f(x) and x=(1)/(z)." If "(d^(2)y)/(dx^(2))=lamda(z^(3))(dy)/(dz)...

    Text Solution

    |

  12. Let x=f(t) and y=g(t), where x and y are twice differentiable function...

    Text Solution

    |

  13. If f(x) satisfies the relation f((5x-3y)/2)=(5f(x)-3f(y))/2AAx ,y in ...

    Text Solution

    |

  14. A function f: RvecR satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x...

    Text Solution

    |

  15. If y=asinx+bcosx ,t h e ny^2+((dy)/(dx))^2 is a function of x (b) func...

    Text Solution

    |

  16. d/(dx)sqrt((1-sin2x)/(1+sin2x))i se q u a lto,(0<x<pi/2), sec^2x (b) ...

    Text Solution

    |

  17. If f(x) = |cos x| + |sin x|, then dy/dx at x = (2pi)/3 is equal to

    Text Solution

    |

  18. If f(x) =|log(e)|x||, then f'(x) equals

    Text Solution

    |

  19. If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a)-(cosx+si...

    Text Solution

    |

  20. Instead of the usual definition of derivative Df(x), if we define a ne...

    Text Solution

    |