Home
Class 12
MATHS
If vecA = ( 1,1,1) and vecC= (0, 1,-1) a...

If `vecA = ( 1,1,1) and vecC= (0, 1,-1)` are given vectors the vector `vecB` satisfying the equations `vecA xx vecB = vecC and vecA.vecB = 3` is ________.

Text Solution

Verified by Experts

The correct Answer is:
`5/3hati+2/3hatj + 2/3 hatk`

Given `vecA = hati + hatj - hatk and vecC = hatj -hatk`
Let `vecB =x hati + yhatj +zhatk`
Given that `vecAxxvecB=vecC Rightarrow |{:(hati,hatj,hatk),(1,1,1),(x,y,z):}|=hatj=hatk`
`or (z-y)i +(x-z)hatj +(y-x)hatk=hatj-hatk`
z-y=0 , x-z=1 and y-x =-1
Also , `vecA. vecB=3`
`Rightarrow x+y +z=3`
Using (i) and(ii) , we get
`y=2//3,xx=5//3,z=2//3`
`vecB = 5/3 hati + 2/3hatj + 2/3 hatk`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector vecB satisfying equations vecAxxvecB=vecC and vecA.vecB=3

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb=vecc and veca.vecb=3

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

If veca, vecb, vecc are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: