Home
Class 12
MATHS
A unit vector coplanar with veci + vecj ...

A unit vector coplanar with `veci + vecj + 2veck and veci + 2 vecj + veck` and perpendicular to `veci + vecj + veck ` is _______

Text Solution

Verified by Experts

The correct Answer is:
`(hatj -hatk)/(sqrt2)or(-hatj+hatk)/(sqrt2)`

Let `xhati + yhatj +zhatk` be a unit vector coplanar with
`hati + hatj + 2hatk and hati + 2hatj +hatk` and also perpendicular to `hati + hatj + hatk` . Then
`|{:(x,y,z),(1,1,2),(1,2,1):}|=0`
`or -3x+ y+z=0`
` and x+y+z=0`
Solving the above by cross - product method , we get
`x/0=y/4=z/(-4)orx/0=y/1=z/(-1)=lambda(say)`
`Rightarrow x=0,y=lamda,z=-lambda`
As `xhati+yhatj+zhatk` is a unit vector , we have
` 0 + lambda^(2) +lambda^(2) =1 `
` or lamda^(2) = 1/2 or lambda= +- 1/sqrt2`
Required vector = `(hatj- hatk)/ sqrt2 or (-hatj +hatk)/sqrt2`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

Vectors vec(3i)-vec(2i)+veck and vec(2i)+vec(6j)+vec(mk) will be perpendicular to each other if

Find the equation of the plane through the point 2veci+3vecj-veck and perpendicular to the vector 3veci-4vecj+7veck .

Write the unit vector in the direction of vecA=5veci+vecj-2veck .

Statement 1 : veca = 3 veci + p vecj +3veck and vecb = 2veci + 3vecj + qveck are parallel vectors if p = 9//2 and q =2 . Statement 2 : If veca= a_1 veci + a_2 vecj + a_3 veck and vecb = b_1 veci + b_2 vecj + b_3veck are parallel, then (a_1)/(b_1) = (a_2)/(b_2)= (a_3)/(b_3) .

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

A particle acted on by constant forces 4veci+vecj-3veck and 3veci+vecj-veck is displaced from the point veci+2vecj+3veck to the point 5veci+4vecj+veck. Find the total work done by the forces

Find the equation of the plane through the 2veci+3vecj-veck and perpendicular to the vector 3veci+2vecj-2veck . Determine the perpendicular distance of this plane from the origin.

Position vectors of two points A and C re 9veci-vecj+7veci-2vecj+7veck respectively THE point intersection of vectors vec(AB)=4veci-vecj+3veck and vec(CD)=2veci-vecj+2veck is P. If vector vec(PQ) is perpendicular to vec(AB) and vec(CD) and PQ=15 units find the position vector of Q.

A force of 15 units act iln the direction of the vector veci-vecj+2veck and passes through a point 2veci-2vecj+2veck . Find the moment of the force about the point veci+vecj+veck .