Home
Class 12
MATHS
The number of vectors of unit length ...

The number of vectors of unit length perpendicular to vectors ` vec a=(1,1,0)a n d vec b=(0,1,1)` is a. one b. two c. three`` d. infinite

A

one

B

two

C

three

D

infinite

Text Solution

Verified by Experts

The correct Answer is:
b

we know that if `hatn` is perpendicular to `veca` as we as `vecb` .then
`hatn=(vecaxxvecb)/(|vecaxxvecb|)or (vecbxxveca)/(|vecbxxveca|)`
As ` veca xx vecb and vecb xx veca` represent two vectors in opposite directions , we have two possible value of `hatn`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

If vec c is a unit vector perpendicular to the vectors vec a\ a n d\ vec b write another unit vector perpendicular vec a\ a n d\ vec bdot

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

Let vec a , vec b , vec c be three non-zero vectors such that vec c is a unit vector perpendicular to both vec aa n d vec b . If the between vec aa n d vec b is pi//6 , prove that [ vec a vec b vec c]^2=1/4| vec a|^2| vec b|^2dot

Vector vec c is perpendicular to vectors vec a=(2,-3,1)a n d vec b=(1,-2,3) and satisfies the condition vec cdot( hat i+2 hat j-7 hat k)=10. Then vector vec c is equal to a. (7,5,1) b. -7,-5,-1 c. 1,1,-1 d. none of these

If vec a , vec b ,\ vec c are three non coplanar mutually perpendicular unit vectors then [ vec a\ vec b\ vec c] is +-1 b. "\ "0"\ " c. -1 d. 2

vec aa n d vec b are two unit vectors that are mutually perpendicular. A unit vector that is equally inclined to vec a , vec ba n d vec axx vec b is a. 1/(sqrt(2))( vec a+ vec b+ vec axx vec b) b. 1/2( vec axx vec b+ vec a+ vec b) c. 1/(sqrt(3))( vec a+ vec b+ vec axx vec b) d. 1/3( vec a+ vec b+ vec axx vec b)

If vec a\ a n d\ vec b are mutually perpendicular unit vectors, write the value of | vec a+ vec b|dot

Let vec aa n d vec b be unit vectors that are perpendicular to each other. Then [ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b] will always be equal to 1 b. 0 c. -1 d. none of these

If the angel between unit vectors vec aa n d vec b60^0 , then find the value of | vec a- vec b|dot

If a vector vec a is perpendicular to two non collinear vectors vec b\ a n d\ vec c ,\ t h e n\ \ vec a\ is perpendicular to every vector in the plane of \ vec b\ a n d\ vec c