Home
Class 12
MATHS
Let PQR be a triangle . Let veca=overlin...

Let `PQR` be a triangle . Let `veca=overline(QR),vecb = overline(RP) and vecc= overline(PQ).if |veca|=12, |vecb|=4sqrt3and vecb.vecc= 24` then which of the following is (are) true ?

A

`|vecc|^(2)/2-|veca|=12`

B

`|vecc|^(2)/2-|veca|=30`

C

`|vecaxxvecb + veccxxveca|= 48sqrt3`

D

`veca.vecb=-72`

Text Solution

Verified by Experts

The correct Answer is:
a,c,d

`veca + vecb+vecc =0`
`Rightarrow vecb + vecc= -veca`
`Rightarrow |vecb|^(2) +|vecc|^(2) + 2vecb.vecc= |veca|^(2)`
` Rightarrow 48 + |vec|^(2) + 48 = 144 `
` Rightarrow |vecc|^(2)=48`
`|vecc|= 4sqrt3`
` (|vecc|)^(2))/2+|veca|=36`
Further,
`veca+vecb=-vecc`
`Rightarrow |veca|^(2)+|vecb|^(2)+2veca.vecb=|vecc|^(2)`
`Rightarrow 144 + 48 + 2 veca. vecb= 48`
`veca. vecb = -72`
`veca.vecb + vecc=0`
`Rightarrow veca xx vecb +veca xx vecc=0`
`|veca xx vecb +vecc xx veca|`
`2|veca xx vecb|`
`=2 sqrt(a^(2)b^(2)-(veca.vecb)^(2))`
`2sqrt((144)(48)-(72)^(2))=48sqrt3`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise single correct answer type|28 Videos
  • DETERMINANTS

    CENGAGE ENGLISH|Exercise All Questions|264 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos

Similar Questions

Explore conceptually related problems

Let vecC=vecA+vecB

Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0 . Which of the following is correct?

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .

If veca, vecb and vecc are such that [veca \ vecb \ vecc] =1, vecc= lambda (veca xx vecb) , angle between vecc and vecb is 2pi//3 , |veca|=sqrt2, |vecb|=sqrt3 and |vecc|=1/sqrt3 then the angle between veca and vecb is

Let veclamda=veca times (vecb +vecc), vecmu=vecb times (vecc+veca) and vecv=vecc times (veca+vecb) , Then

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: