Home
Class 12
MATHS
If f(x)=xtan^(-1)x , find f^(prime)(sqrt...

If `f(x)=xtan^(-1)x ,` find `f^(prime)(sqrt(3))` using the first principle.

Text Solution

Verified by Experts

We have
`f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)`
`therefore" "f'(sqrt(3))=underset(hrarr0)lim(f(sqrt(3)+h)-f(sqrt(3)))/(h)`
`=underset(hrarr0)lim((sqrt(3)+h)tan^(-1)(sqrt(3)+h)-sqrt(3)tan^(-1)sqrt(3))/(h)`
`=underset(hrarr0)lim(sqrt(3))/(h)tan^(-1)((sqrt(3+h)-sqrt(3))/(1+sqrt(3)(sqrt(3)+h)))+underset(hrarr0)limtan^(-1)(sqrt(3)+h)`
`=sqrt(3)underset(hrarr0)lim{tan^(-1)((h)/(4+sqrt(3)h))/((h)/(4+sqrt(3)h))}(1)/(4+sqrt(3)h)+underset(hrarr0)limtan^(-1)(sqrt(3)+h)`
`=sqrt(3)xx1xx(1)/(4)+tan^(-1)sqrt(3)=(sqrt(3))/(4)+tan^(-1)sqrt(3)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x) =xtan^(-1)x , then f '(1) is equal to

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

Differentiate, f(x) = ax^(2) + (b)/(x) with respect to 'x' using first principle.

Find the derivative of sqrt(3x + 5) using first principle of derivative

Find the derivative of f(x)= xsin x from the first principle.

Find the derivative of sqrt(2x+3) using the first principle of differentiation.

If f(x)=|cosx-sinx| ,find f^(prime)(pi/6) and f^(prime)(pi/3)dot

If f(x)=|logx|,xgt0 ,find f^(prime)(1/e)a n df^(prime)(e)