Home
Class 12
MATHS
If f(x)=x|x|, then prove that f^(prime)(...

If `f(x)=x|x|,` then prove that `f^(prime)(x)=2|x|`

Text Solution

AI Generated Solution

To prove that \( f'(x) = 2|x| \) for the function \( f(x) = x|x| \), we will use the product rule of differentiation. Let's go through the steps: ### Step 1: Write the function We start with the function: \[ f(x) = x |x| \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

A function f: R->R satisfies the equation f(x+y)=f(x)f(y) for all x , y in R and f(x)!=0 for all x in Rdot If f(x) is differentiable at x=0a n df^(prime)(0)=2, then prove that f^(prime)(x)=2f(x)dot

If f (x) = cot x, then prove that : f(-x)=-f(x)

If (x)=tan x , the prove that :f(x)+f(-x)=0

If f(x)=alphax^n , prove that alpha=(f^(prime)(1))/n .

If g is the inverse of f and f'(x)=1/(1+x^n) , prove that g^(prime)(x)=1+(g(x))^n

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)=(x)/(x-1) , then prove that (f(a))/(f(a+1))=f(a^(2))

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)