Home
Class 12
MATHS
Find (dy)/(dx)" for "y=sin^(-1) (cos x),...

Find `(dy)/(dx)" for "y=sin^(-1) (cos x), x in (0, pi)cup (pi, 2pi).`

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}(\cos x)\) where \(x\) lies in the intervals \((0, \pi)\) and \((\pi, 2\pi)\), we can simplify the expression before differentiating. Here’s a step-by-step solution: ### Step 1: Simplify the Function We know that: \[ \cos x = \sin\left(\frac{\pi}{2} - x\right) \] Thus, we can rewrite \(y\) as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

Find (dy)/(dx) for y=sin^(-1)(cosx), where x in (0,2pi)dot

Find (dy)/(dx) if x-y =pi

If y=sin^(-1)(sin x), then dy/dx at x =pi/2 is

Let y=g(x) be the solution of the differential equation sinx ((dy)/(dx))+y cos x=4x, x in (0,pi) If y(pi/2)=0 , then y(pi/6) is equal to

Find (dy)/(dx) in the following: sin^2y+cosx y=pi

Find (dy)/(dx) at x=1 , y=pi/4 if sin^2 y+cos xy=k

If y="sec"(tan^(-1)x),t h e n (dy)/(dx) at x=1 is (a) cos(pi/4) (b) sin(pi/2) (c) sin(pi/6) (d) cos(pi/3)

If y = y ( x ) is the solution of differential equation sin y (dy ) /(dx ) - cos y = e ^ ( - x ) such that y ( 0 ) = ( pi ) /(2) then y (A) is equal to

1) int_(-pi/2)^pi sin^(-1) (sinx) dx 2) int_(-pi/2)^(pi/2) (-pi/2)/(sqrt(cos x sin^2 x)) dx 3) int_0^2 2x[x] dx