Home
Class 12
MATHS
If f(x) = cos x cos 2x cos 4x cos 8x cos...

If `f(x) = cos x cos 2x cos 4x cos 8x cos 16x` then find `f' (pi/4)`

Text Solution

AI Generated Solution

To find \( f'(\frac{\pi}{4}) \) for the function \( f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x \), we can follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \cos x \cos 2x \cos 4x \cos 8x \cos 16x \] To simplify this, we can multiply and divide by \( 2 \sin x \): ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=cos x cos 2x cos 4x cos 8x , then (dy)/(dx)" at "x=(pi)/(2) is

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

If f(x) = cos x\ cos 2x\ cos 2^2\ x\ cos 2^3 x\ ....cos2^(n-1) x and n gt 1, then f'(pi/2) is

int ((cos 6x+6cos 4x+ 15 cos 2x+10)/(10 cos ^(2) x +5 cos x cos 3 x+ cos x cos 5 x ))dx =f (x)+C, then f (10) is equal to:

Let f(x) = cos2x.cos4x.cos6x.cos8x.cos10x then lim_(x ->0) (1 - (f(x))^3)/(55sin^2x) equals

The function f(x) given by f(x)=(sin 8x cos x-sin6x cos 3x)/(cos x cos2x-sin3x sin 4x) , is

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

If f(x) = cos(x)cos(2x)cos(2^(2)x)…cos(2^(n-1)x) and n gt1 , then f'((pi)/(2)) is

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is