Home
Class 12
MATHS
"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x...

`"If "log(x^(2)+y^(2))=2tan^(-1)""((y)/(x))," show that "(dy)/(dx)=(x+y)/(x-y)`

Text Solution

AI Generated Solution

To solve the problem, we need to differentiate the given equation and show that \(\frac{dy}{dx} = \frac{x+y}{x-y}\). Let's go through the steps systematically. ### Step 1: Start with the given equation We are given: \[ \log(x^2 + y^2) = 2 \tan^{-1}\left(\frac{y}{x}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

If log (x^(2)+y^(2)) = 2 tan ^(-1) (x/y) " then show that " (dy)/(dx) = (y-x)/(y +x)

dy/dx=(x-y+1)/(2x-2y+3)

If log ((x^(2) -y^(2))/( x^(2)+ y^(2))) =a, Prove that (dy)/(dx) =(y)/(x).

If y=tan^(-1)x , show that (1+x^2)(d^2y)/(dx^2)+2x(dy)/(dx)=0 .

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot