Home
Class 12
MATHS
"If "0ltxlt1," prove that "(1)/(1+x)+(2x...

`"If "0ltxlt1," prove that "(1)/(1+x)+(2x)/(1+x^(2))+(4x^(3))/(1+x^(4))+...oo=(1)/(1-x)`

Text Solution

Verified by Experts

The given series is in the form
`(f'_(1)(x))/(f_(1)(x))+(f'_(2)(x))/(f_(2)(x))+(f'_(3)(x))/(f_(3)(x))+...oo`
Then consider the product `f_(1)(x)cdotf_(2)(x)cdotf_(3)(x)...f_(n)(x)." Now"`
`(1-x)(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^(n-1)))" (1)"`
`=(1-x^(2))(1+x^(2))(1+x^(4))...(1+x^(2^(n-1)))`
`=(1-x^(4))(1+x^(4))...(1+x^(2^(n-1)))` :
`=(1-x^(2^(n-1)))(1+x^(2^(n-1)))`
`1-x^(2^(n))`
`"Now, when "nrarroo,x^(2^(n-1))rarr0(because0ltxlt1).`
`"Therefore, taking "nrarroo," in (1), we get"`
`(1-x)(1+x)(1+x^(2))(1+x^(4))...=1`
Taking logarithm, we get
`log(1-x)+log(1+x)+log(1+x^(2))+log(1+x^(4))+...=0`
Differentiating w.r.t.x, we get
`-(1)/(1-x)+(1)/(1+x)+(2x)/(1+x^(2))+(4x^(3))/(1+x^(4))+...=0`
`"or "(1)/(1+x)+(2x)/(1+x^(2))+(4x^(3))/(1+x^(4))+...oo=(1)/(1-x)`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x<1,p rov et h a t 1/(1+x)+(2x)/(1+x^2)+(4x^3)/(1+x^4)+oo=1/(1-x)

if x<1 then 1/(1+x)+(2x)/(1+x^2)+(4x^3)/(1+x^4)+..............oo

Prove that: int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx =(pi)/(4)

If 0ltxlt1 , prove that: log(1+x)+log(1+x^2)+log(1+x^4)+… oo=-log(1-x)

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

Show that X^((1)/(2))*X^((1)/(4))*X^((1)/(8)) ... Upto oo = X

Prove that : int_(0)^(oo) log (x+(1)/(x)). (dx)/(1+x^(2)) = pi log_(e) 2

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

If x ne 0 and x + (1)/(x) = 2 , then show that: x^(2)+ (1)/(x^(2))= x^(3) + (1)/(x^(3)) = x^(4) + (1)/(x^(4))

Evaluate : lim_(x to 0 ) ((1+6x^(2))/(1+4x^(2)))^(1/(x^(2)))