Home
Class 12
MATHS
Let f: RvecR be a function satisfying co...

Let `f: RvecR` be a function satisfying condition `f(x+y^3)=f(x)+[f(y)]^3fora l lx ,y in Rdot` If `f^(prime)(0)geq0,` find `f(10)dot`

Text Solution

Verified by Experts

`"Given "f(x+y^(3))=f(x)+[f(y)]^(3)" (1)"`
`"and "f'(0)ge0" (2)"`
Replacing x, y by 0, we get
`f(0)=f(0)+f(0)^(3)orf(0)=0" (3)"`
`"Also, "f'(0)=underset(hrarr0)lim(f(0+h)-f(0))/(h)=underset(hrarr0)lim(f(h))/(h)" (4)"`
`"Let "I=f'(0)=underset(hrarr0)lim(f(0 +(h^(1//3))^(3))-f(0))/((h^(1//3))^(3))`
`=underset(hrarr0)lim(f((h^(1//3)))^(3))/((h^(1//3))^(3))=underset(hrarr0)lim((f(h^(1//3)))/((h^(1//3))))^(3)=I^(3)`
`"or "I=I^(3)`
`"or "I=0, 1,-as f'(0)ge0`
`therefore" "f'(0)=0,1`
`"Thus "f'(x)=underset(hrarr0)lim(f(x+h)-f(x))/(h)=underset(hrarr0)lim(f(x+(h^(1//3))^(3))-f(x))/((h^(1//3))^(3))`
`=underset(hrarr0)lim(f(x)+(f(h^(1//3)))^(3)-f(x))/((h^(1//3))^(3))" [using (1)]"`
`=underset(hrarr0)lim(f(h^(1//3))/((h^(1//3))))^(3)=(f'(0))^(3)`
`=0,1" [As f'(0)=0, 1 using (5)]"`
Integrating both sides, we get
`f(x)=c or x +c`
`"or "f(x)=0 or x (becausef(0) = 0)`
Thus, f(10) = 0 or 10
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Solved Examples|28 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

If f((x+2y)/3)=(f(x)+2f(y))/3AAx ,y in Ra n df^(prime)(0)=1,f(0)=2, then find f(x)dot

Let f be a differential function satisfying the condition. f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0 If f'(1)=2 , then f'(x) is equal to

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

Determine the function satisfying f^2(x+y)=f^2(x)+f^2(y)AAx ,y in Rdot

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be a function satisfying of xdot Then f(x y)=(f(x))/y for all positive real numbers x and ydot If f(30)=20 , then find the value of f(40)dot

If f((x+y)/3)=(2+f(x)+f(y))/3 for all real xa n dy and f^(prime)(2)=2, then determine y=f(x)dot

If f((x+y)/3)=(2+f(x)+f(y))/3 for all real xa n dy and f^(prime)(2)=2, then determine y=f(x)dot