Home
Class 12
MATHS
"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan...

`"Let "f(x)=((2^(x)+2^(-x))sin x sqrt(tan^(-1)(x^(2)-x+1)))/((7x^(2)+3x+1)^(3))`. Then find the value of f'(0).

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(0) \) for the function \[ f(x) = \frac{(2^x + 2^{-x}) \sin x \sqrt{\tan^{-1}(x^2 - x + 1)}}{(7x^2 + 3x + 1)^3}, \] we will use the definition of the derivative: \[ f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}. \] ### Step 1: Calculate \( f(0) \) First, we need to evaluate \( f(0) \): \[ f(0) = \frac{(2^0 + 2^{0}) \sin(0) \sqrt{\tan^{-1}(0^2 - 0 + 1)}}{(7(0)^2 + 3(0) + 1)^3}. \] Calculating each term: - \( 2^0 + 2^0 = 1 + 1 = 2 \) - \( \sin(0) = 0 \) - \( \tan^{-1}(0^2 - 0 + 1) = \tan^{-1}(1) = \frac{\pi}{4} \) - Therefore, \( \sqrt{\tan^{-1}(1)} = \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2} \) - The denominator becomes \( (7(0)^2 + 3(0) + 1)^3 = 1^3 = 1 \) Putting it all together: \[ f(0) = \frac{2 \cdot 0 \cdot \frac{\sqrt{\pi}}{2}}{1} = 0. \] ### Step 2: Set Up the Limit Now we set up the limit for the derivative: \[ f'(0) = \lim_{x \to 0} \frac{f(x) - 0}{x} = \lim_{x \to 0} \frac{f(x)}{x}. \] ### Step 3: Substitute \( f(x) \) Substituting \( f(x) \): \[ f'(0) = \lim_{x \to 0} \frac{(2^x + 2^{-x}) \sin x \sqrt{\tan^{-1}(x^2 - x + 1)}}{(7x^2 + 3x + 1)^3 \cdot x}. \] ### Step 4: Evaluate the Limit Now, we evaluate the limit as \( x \to 0 \): 1. **Evaluate \( 2^x + 2^{-x} \)**: \[ 2^x + 2^{-x} \to 1 + 1 = 2 \text{ as } x \to 0. \] 2. **Evaluate \( \sin x \)**: \[ \sin x \to x \text{ as } x \to 0. \] 3. **Evaluate \( \tan^{-1}(x^2 - x + 1) \)**: \[ x^2 - x + 1 \to 1 \text{ as } x \to 0 \implies \tan^{-1}(1) = \frac{\pi}{4}. \] Thus, \( \sqrt{\tan^{-1}(x^2 - x + 1)} \to \sqrt{\frac{\pi}{4}} = \frac{\sqrt{\pi}}{2} \). 4. **Evaluate the denominator**: \[ (7x^2 + 3x + 1)^3 \to 1^3 = 1 \text{ as } x \to 0. \] Putting it all together in the limit: \[ f'(0) = \lim_{x \to 0} \frac{2 \cdot x \cdot \frac{\sqrt{\pi}}{2}}{1 \cdot x} = \lim_{x \to 0} \frac{2 \cdot x \cdot \frac{\sqrt{\pi}}{2}}{x} = \sqrt{\pi}. \] ### Final Answer Thus, the value of \( f'(0) \) is \[ \sqrt{\pi}. \]

To find the derivative \( f'(0) \) for the function \[ f(x) = \frac{(2^x + 2^{-x}) \sin x \sqrt{\tan^{-1}(x^2 - x + 1)}}{(7x^2 + 3x + 1)^3}, \] we will use the definition of the derivative: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If f(x)=inte^(x)(tan^(-1)x+(2x)/((1+x^(2))^(2)))dx,f(0)=0 then the value of f(1) is

If f (x)=((x+1)^(7)sqrt(1+x ^(2)))/((x^(2) -x+1)^(6)), then the value of f'(0) is equal to:

Draw the graph of f(x) = (sin x)/(sqrt(1 + tan^(2)x))- (cos x)/(sqrt(1 + cot^(2)x)) . Then find the range of f(x).

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for

f(x)=|{:(cos x, x, 1),(2sin x, x^(2), 2x),(tan x, x, 1):}|." Then find the vlue of lim_(x to 0) (f'(x))/(x).

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5

If x=1/(2-sqrt(3)), find the value of x^3-2x^2-7x+5