Home
Class 12
MATHS
Fi nd dy/dx , y=sin^(-1)""(2x)/(1+x^(2))...

` Fi nd dy/dx , y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) Let \(x = \tan(\theta)\). Then, we can express \(y\) in terms of \(\theta\): \[ y = \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) \] ### Step 2: Use the identity for \(\sin(2\theta)\) We know from trigonometric identities that: \[ \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \sin(2\theta) \] Thus, we can rewrite \(y\): \[ y = \sin^{-1}(\sin(2\theta)) \] ### Step 3: Simplify \(y\) Since \(\sin^{-1}(\sin(2\theta)) = 2\theta\) (for \(-\frac{\pi}{2} \leq 2\theta \leq \frac{\pi}{2}\)), we have: \[ y = 2\theta \] ### Step 4: Differentiate \(y\) with respect to \(x\) Now, we differentiate both sides with respect to \(x\): \[ \frac{dy}{dx} = \frac{d}{dx}(2\theta) \] Using the chain rule, we get: \[ \frac{dy}{dx} = 2 \cdot \frac{d\theta}{dx} \] ### Step 5: Find \(\frac{d\theta}{dx}\) Since \(x = \tan(\theta)\), we differentiate: \[ \frac{dx}{d\theta} = \sec^2(\theta) \] Thus, \[ \frac{d\theta}{dx} = \frac{1}{\sec^2(\theta)} = \cos^2(\theta) \] ### Step 6: Substitute back to find \(\frac{dy}{dx}\) Substituting back into our expression for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = 2 \cdot \cos^2(\theta) \] ### Step 7: Express \(\cos^2(\theta)\) in terms of \(x\) Using the identity \(\sec^2(\theta) = 1 + \tan^2(\theta)\), we have: \[ \sec^2(\theta) = 1 + x^2 \implies \cos^2(\theta) = \frac{1}{1+x^2} \] Thus, \[ \frac{dy}{dx} = 2 \cdot \frac{1}{1+x^2} = \frac{2}{1+x^2} \] ### Final Result Therefore, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{2}{1+x^2} \] ---

To find \(\frac{dy}{dx}\) for the function \(y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)\), we can follow these steps: ### Step 1: Substitute \(x\) with \(\tan(\theta)\) Let \(x = \tan(\theta)\). Then, we can express \(y\) in terms of \(\theta\): \[ y = \sin^{-1}\left(\frac{2\tan(\theta)}{1+\tan^2(\theta)}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Fi nd dy/dx , y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxlt1/sqrt3

If y=sin^(-1)((2x)/(1+x^2)), then find (dy)/(dx)

If y=sin^(-1)((2x)/(1+x^2)), then find (dy)/(dx)

If y=sin^-1((1-x^2)/(1+x^2)) ,then dy/dx

Find (dy)/(dx) for y=sin(x^2+1)dot

Find (dy)/(dx) for y=sin(x^2+1)dot

"Find "(dy)/(dx)" for "y=sin(x^(2)+1).

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1 . find dy/dx

Find (dy)/(dx) in the following: y=sin^(-1)((2x)/(1+x^2))

dy/dx=(x-y+1)/(2x-2y+3)