Home
Class 12
MATHS
Fi nd dy/dx , y=tan^-1[(3x-x^3)/(1-3x^2)...

`Fi nd dy/dx , y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxlt1/sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)\), we can use a known identity for the tangent inverse function. ### Step-by-Step Solution: 1. **Recognize the Identity**: We know from trigonometric identities that: \[ \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) = 3\tan^{-1}(x) \] Therefore, we can rewrite \(y\) as: \[ y = 3\tan^{-1}(x) \] 2. **Differentiate Both Sides**: Now, we differentiate both sides with respect to \(x\): \[ \frac{dy}{dx} = 3 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] 3. **Use the Derivative of \(\tan^{-1}(x)\)**: The derivative of \(\tan^{-1}(x)\) is: \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] Substituting this into our equation gives: \[ \frac{dy}{dx} = 3 \cdot \frac{1}{1 + x^2} \] 4. **Final Result**: Thus, we have: \[ \frac{dy}{dx} = \frac{3}{1 + x^2} \]

To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)\), we can use a known identity for the tangent inverse function. ### Step-by-Step Solution: 1. **Recognize the Identity**: We know from trigonometric identities that: \[ \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right) = 3\tan^{-1}(x) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

Fi nd dy/dx , y=sin^(-1)""(2x)/(1+x^(2)),-1lexle1

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , if -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)),\ -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^3)/(1-3x^2)) , |x|<1/sqrt3 w.r.t tan^(-1)(x/sqrt(1-x^2))

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

show that tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/sqrt3

Prove that tan^(-1)x+tan^(-1)(2x)/(1-x^2)=tan^(-1)((3x-x^3)/(1-3x^2)),|x|<1/(sqrt(3))