Home
Class 12
MATHS
y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sq...

`y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we start with the function provided and apply the necessary transformations and differentiation. ### Step 1: Write the function We start with the given function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] ### Step 2: Substitute \( x \) Let’s substitute \( x \) with \( \cos \theta \): \[ x = \cos \theta \] Then, we can express \( y \) in terms of \( \theta \): \[ y = \sec^{-1}\left(\frac{1}{2\cos^2\theta - 1}\right) \] ### Step 3: Simplify the expression Using the double angle identity \( 2\cos^2\theta - 1 = \cos 2\theta \), we can rewrite \( y \): \[ y = \sec^{-1}\left(\frac{1}{\cos 2\theta}\right) \] ### Step 4: Rewrite using secant Since \( \frac{1}{\cos 2\theta} = \sec 2\theta \), we have: \[ y = \sec^{-1}(\sec 2\theta) \] ### Step 5: Simplify further The secant and its inverse cancel out, leading to: \[ y = 2\theta \] ### Step 6: Substitute back for \( \theta \) Recall that \( \theta = \cos^{-1}(x) \). Thus, we can substitute back: \[ y = 2\cos^{-1}(x) \] ### Step 7: Differentiate \( y \) with respect to \( x \) Now, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx}[2\cos^{-1}(x)] \] Using the derivative of \( \cos^{-1}(x) \): \[ \frac{dy}{dx} = 2 \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) \] So, \[ \frac{dy}{dx} = -\frac{2}{\sqrt{1 - x^2}} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = -\frac{2}{\sqrt{1 - x^2}} \] ---

To solve the given problem step by step, we start with the function provided and apply the necessary transformations and differentiation. ### Step 1: Write the function We start with the given function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] ### Step 2: Substitute \( x \) Let’s substitute \( x \) with \( \cos \theta \): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)), ="" then="" find="" (dy)/(dx)

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

If y=sec^(-1)(1/(2x^2-1));0

Differentiate sec^(-1)(1/(2x^2-1)),\ 0

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)) , u in (0,1/sqrt2)uu(1/sqrt2,1) , prove that 2dy/dx+ 1 = 0 .

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)),0ltxlt1, prove that (dy)/ (dx)="4/(1+x^2)