Home
Class 12
MATHS
"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1...

`"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x),` where `x!=0`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\), we can follow these steps: ### Step 1: Simplify the Expression We start with the expression for \(y\): \[ y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] ### Step 2: Substitute \(x = \tan(\theta)\) Let \(x = \tan(\theta)\). Then, we have: \[ \sqrt{1+x^2} = \sqrt{1+\tan^2(\theta)} = \sec(\theta) \] Thus, we can rewrite \(y\) as: \[ y = \tan^{-1}\left(\frac{\sec(\theta)-1}{\tan(\theta)}\right) \] ### Step 3: Rewrite the Expression Using the identity \(\sec(\theta) = \frac{1}{\cos(\theta)}\) and \(\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}\), we can simplify: \[ y = \tan^{-1}\left(\frac{\frac{1}{\cos(\theta)} - 1}{\frac{\sin(\theta)}{\cos(\theta)}}\right) \] This simplifies to: \[ y = \tan^{-1}\left(\frac{1 - \cos(\theta)}{\sin(\theta)}\right) \] ### Step 4: Use Trigonometric Identities Using the identity \(1 - \cos(\theta) = 2\sin^2\left(\frac{\theta}{2}\right)\) and \(\sin(\theta) = 2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)\): \[ y = \tan^{-1}\left(\frac{2\sin^2\left(\frac{\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)}\right) \] This simplifies to: \[ y = \tan^{-1}\left(\tan\left(\frac{\theta}{2}\right)\right) \] ### Step 5: Simplify Further Thus, we have: \[ y = \frac{\theta}{2} \] Since \(\theta = \tan^{-1}(x)\), we can substitute back: \[ y = \frac{1}{2} \tan^{-1}(x) \] ### Step 6: Differentiate \(y\) with Respect to \(x\) Now, we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{d}{dx}(\tan^{-1}(x)) \] The derivative of \(\tan^{-1}(x)\) is \(\frac{1}{1+x^2}\), so: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{1+x^2} \] ### Final Answer Thus, the required derivative is: \[ \frac{dy}{dx} = \frac{1}{2(1+x^2)} \] ---

To find \(\frac{dy}{dx}\) for the function \(y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)\), we can follow these steps: ### Step 1: Simplify the Expression We start with the expression for \(y\): \[ y = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"Find" (dy)/(dx)"if" y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Find (dy)/(dx) for y=tan^(-1){sqrt((a-x)/(a+x))}," where " -a lt x lt a

Differentiate tan^(-1)(( sqrt(1+x^(2))-1)/(x))

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

(dy)/(dx) for y=tan^(-1){sqrt((1+cosx)/(1-cosx))} ,where 0 lt x lt pi , is

Differentiate the following functions with respect to x : (i) tan^(-1){sqrt(1+x^2)-x} , x in RR (ii) tan^(-1){(sqrt(1+x^2)-1)/x},\ \ x!=0

(1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x)

If y= tan ^-1 ((x)/sqrt(a^2-x^2)) then dy/dx =?

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)x ,x!=0.