Home
Class 12
MATHS
Find (dy)/(dx) for the function: y=sin^(...

Find `(dy)/(dx)` for the function: `y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \sin^{-1}(\sqrt{1-x}) + \cos^{-1}(\sqrt{x}), \] we will differentiate it step by step. ### Step 1: Rewrite the Function We start with the given function: \[ y = \sin^{-1}(\sqrt{1-x}) + \cos^{-1}(\sqrt{x}). \] ### Step 2: Use the Identity for Inverse Functions We know that \(\sin^{-1}(a) + \cos^{-1}(a) = \frac{\pi}{2}\) for any \(a\) in the range. However, in this case, we have two different arguments. We can simplify the expression using the fact that: \[ \sin^{-1}(\sqrt{1-x}) + \cos^{-1}(\sqrt{x}) = \frac{\pi}{2} \text{ when } \sqrt{1-x} = \sqrt{x}. \] But we will differentiate directly without using this identity for now. ### Step 3: Differentiate Each Term Now we differentiate each term separately. 1. **Differentiate \(\sin^{-1}(\sqrt{1-x})\)**: - Let \(u = \sqrt{1-x}\). - Then, \(\frac{du}{dx} = \frac{-1}{2\sqrt{1-x}}\). - The derivative of \(\sin^{-1}(u)\) is \(\frac{1}{\sqrt{1-u^2}}\). - Thus, applying the chain rule: \[ \frac{d}{dx}(\sin^{-1}(\sqrt{1-x})) = \frac{1}{\sqrt{1-(\sqrt{1-x})^2}} \cdot \frac{du}{dx} = \frac{1}{\sqrt{x}} \cdot \left(-\frac{1}{2\sqrt{1-x}}\right) = -\frac{1}{2\sqrt{x(1-x)}}. \] 2. **Differentiate \(\cos^{-1}(\sqrt{x})\)**: - Let \(v = \sqrt{x}\). - Then, \(\frac{dv}{dx} = \frac{1}{2\sqrt{x}}\). - The derivative of \(\cos^{-1}(v)\) is \(-\frac{1}{\sqrt{1-v^2}}\). - Thus, applying the chain rule: \[ \frac{d}{dx}(\cos^{-1}(\sqrt{x})) = -\frac{1}{\sqrt{1-(\sqrt{x})^2}} \cdot \frac{dv}{dx} = -\frac{1}{\sqrt{1-x}} \cdot \left(\frac{1}{2\sqrt{x}}\right) = -\frac{1}{2\sqrt{x(1-x)}}. \] ### Step 4: Combine the Derivatives Now we combine the derivatives from both terms: \[ \frac{dy}{dx} = -\frac{1}{2\sqrt{x(1-x)}} - \frac{1}{2\sqrt{x(1-x)}} = -\frac{1}{\sqrt{x(1-x)}}. \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = -\frac{1}{\sqrt{x(1-x)}}. \] ---

To find \(\frac{dy}{dx}\) for the function \[ y = \sin^{-1}(\sqrt{1-x}) + \cos^{-1}(\sqrt{x}), \] we will differentiate it step by step. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the function: y=a^(sin^(-1)x)^(2)

Find (dy)/(dx) for the function: y=a^((sin^(-1)x)^2

Find (dy)/(dx) " when " y = sin^(-1) sqrt((1+x^(2))/2)

Find (dy)/(dx) for y=tan^(-1)sqrt((a-x)/(a+x)) ,-a < x < a

Find (dy)/(dx) if y=sec^(-1)((sqrt(x)+1)/(sqrt(x)-1))+sin^(-1)((sqrt(x)-1)/(sqrt(x)+1))

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

Find (dy)/(dx), when x=cos^(-1)1/(sqrt(1+t^2))"and"y=sin^(-1)1/(sqrt(1+t^2)),tR

y=sin(sqrt(cos sqrt(x))) ,then dy/dx=

y=sin^(-1)(x/sqrt(1+x^2))+cos^(-1)(1/sqrt(1+x^2)), Find dy/dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx