Home
Class 12
MATHS
y=sqrt(sinsqrt(x))...

`y=sqrt(sinsqrt(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sqrt{\sin(\sqrt{x})} \), we will use the chain rule and the product rule of differentiation. Let's go through the solution step by step. ### Step 1: Rewrite the function We start with the function: \[ y = \sqrt{\sin(\sqrt{x})} \] This can be rewritten using exponent notation: \[ y = (\sin(\sqrt{x}))^{1/2} \] ### Step 2: Differentiate using the chain rule To differentiate \( y \), we apply the chain rule. The derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{2}(\sin(\sqrt{x}))^{-1/2} \cdot \frac{d}{dx}(\sin(\sqrt{x})) \] ### Step 3: Differentiate \( \sin(\sqrt{x}) \) Next, we need to differentiate \( \sin(\sqrt{x}) \). Again, we apply the chain rule: \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x}) \] Now, we differentiate \( \sqrt{x} \): \[ \frac{d}{dx}(\sqrt{x}) = \frac{1}{2\sqrt{x}} \] Putting it all together, we have: \[ \frac{d}{dx}(\sin(\sqrt{x})) = \cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}} \] ### Step 4: Substitute back into the derivative Now we substitute this back into our expression for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{1}{2}(\sin(\sqrt{x}))^{-1/2} \cdot \left(\cos(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}\right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos(\sqrt{x})}{4\sqrt{x} \sqrt{\sin(\sqrt{x})}} \] ### Final Answer Thus, the derivative of \( y = \sqrt{\sin(\sqrt{x})} \) is: \[ \frac{dy}{dx} = \frac{\cos(\sqrt{x})}{4\sqrt{x} \sqrt{\sin(\sqrt{x})}} \]

To find the derivative of the function \( y = \sqrt{\sin(\sqrt{x})} \), we will use the chain rule and the product rule of differentiation. Let's go through the solution step by step. ### Step 1: Rewrite the function We start with the function: \[ y = \sqrt{\sin(\sqrt{x})} \] This can be rewritten using exponent notation: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the function: y=logsqrt(sinsqrt(e^x))

y=logsqrt(sinsqrt(e^(x)))

y=logsqrt(sinsqrt(e^(x)))

The vertical distance between the minimum and maximum values of the function y= |-sqrt2sinsqrt3x| is

Let f(x)=x^(2)-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cos sqrt(2))

If int_0^(pi^2/4) (2sinsqrt(x)+sqrt(x)cossqrt(x))dx=pi^2/n , then n = ….

If y=sqrt(x)^(sqrt(x)^(sqrt(x)^dotoo)) , show that (dy)/(dx)=(y^2)/(x(2-ylogx)) .

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=(sqrt(x))^sqrt(x)^sqrt(x)^(dot)^(((oo))),s howt h a t(dy)/(dx)=(y^2)/(x(2-ylogx)

Differentiate the following functions with respect to e^(sinsqrt(x))