Home
Class 12
MATHS
y=e^(sin x^(3)) fi nd dy/dx...

`y=e^(sin x^(3)) fi nd dy/dx `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) of the function \( y = e^{\sin(x^3)} \), we will use the chain rule of differentiation. The chain rule states that if you have a composite function \( y = f(g(x)) \), then the derivative is given by \( \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \). ### Step-by-Step Solution: 1. **Identify the outer and inner functions**: Here, the outer function is \( f(u) = e^u \) where \( u = \sin(x^3) \). The inner function is \( g(x) = \sin(x^3) \). 2. **Differentiate the outer function**: The derivative of \( f(u) = e^u \) with respect to \( u \) is: \[ f'(u) = e^u \] Therefore, when substituting back for \( u \), we have: \[ f'(\sin(x^3)) = e^{\sin(x^3)} \] 3. **Differentiate the inner function**: Next, we need to differentiate \( g(x) = \sin(x^3) \). Using the chain rule again: \[ g'(x) = \cos(x^3) \cdot \frac{d}{dx}(x^3) \] The derivative of \( x^3 \) is \( 3x^2 \), so: \[ g'(x) = \cos(x^3) \cdot 3x^2 \] 4. **Apply the chain rule**: Now we can combine these results using the chain rule: \[ \frac{dy}{dx} = f'(\sin(x^3)) \cdot g'(x) = e^{\sin(x^3)} \cdot (\cos(x^3) \cdot 3x^2) \] 5. **Final expression**: Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 3x^2 \cos(x^3) e^{\sin(x^3)} \] ### Summary of the Solution: \[ \frac{dy}{dx} = 3x^2 \cos(x^3) e^{\sin(x^3)} \]

To find the derivative \( \frac{dy}{dx} \) of the function \( y = e^{\sin(x^3)} \), we will use the chain rule of differentiation. The chain rule states that if you have a composite function \( y = f(g(x)) \), then the derivative is given by \( \frac{dy}{dx} = f'(g(x)) \cdot g'(x) \). ### Step-by-Step Solution: 1. **Identify the outer and inner functions**: Here, the outer function is \( f(u) = e^u \) where \( u = \sin(x^3) \). The inner function is \( g(x) = \sin(x^3) \). 2. **Differentiate the outer function**: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=x^(y)+(sin x)^(x) find dy/dx

If y = e^( sin x^3) , find (dy)/( dx) .

y=e^(sin x)/sinx then (dy)/(dx)=

If y=5^(sin^(3)x+3) then (dy)/(dx)=

If y=x^(sin x), then find (dy)/(dx)

y=(x+sin x)/(x+cos x) , fi nd dy/dx

(ii)if y=e^(cos(sin^(2)x)) ,then dy/dx

Let y=e^(x sin x^3)+(t a n x)^x Find (dy)/(dx)

If y=(e^(x))/(sinx) , find (dy)/(dx)

If y=sin^2(x^3) , then dy/dx=