Home
Class 12
MATHS
y=logsqrt(sinsqrt(e^(x)))...

`y=logsqrt(sinsqrt(e^(x)))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(4)e^(x//2)cot (e^(x//2))`

`(d)/(dx)[logsqrt(sin)sqrt(e^(x))]=(d)/(dx)[(1)/(2)log (sinsqrt(e^(x)))]`
`=(1)/(2)cot sqrt(e^(x))(1)/(2sqrt(e^(x)))e^(x)=(1)/(4)e^(x//2)cot (e^(x//2))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

y=sqrt(sinsqrt(x))

Find (dy)/(dx) for the function: y=sqrt(sinsqrt(x))

Prove that f(x)=(1//x)logsqrt(x+sqrt(x^(2)+1)) is an even function.

Let f(x)=x^(2)-2sqrt((sinsqrt(3)-sinsqrt(2)))x-(cossqrt(3)-cos sqrt(2))

If y=logsqrt(tanx) , write (dy)/(dx) .

Differentiate logsqrt((1+sinx)/(1-sinx)) with respect to x .

Differentiate logsqrt((1+sinx)/(1-sinx)) with respect to x :

Differentiate the following w.r.t.x. logsqrt((1+sinx)/(1-sinx))

Differentiate the following functions with respect to e^(sinsqrt(x))

Differentiate e^(sinsqrt(x)) with respect to x :