Home
Class 12
MATHS
Find (dy)/(dx) for the function: y=a^((s...

Find `(dy)/(dx)` for the function: `y=a^((sin^(-1)x)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = a^{(\sin^{-1} x)^2}\), we will use the chain rule and the properties of logarithmic differentiation. Let's go through the steps systematically. ### Step 1: Identify the function We have: \[ y = a^{(\sin^{-1} x)^2} \] ### Step 2: Differentiate using the chain rule To differentiate \(y\) with respect to \(x\), we can use the formula for the derivative of an exponential function: \[ \frac{d}{dx}(a^u) = a^u \ln(a) \frac{du}{dx} \] where \(u = (\sin^{-1} x)^2\). ### Step 3: Differentiate the exponent Now, we need to differentiate \(u = (\sin^{-1} x)^2\) using the chain rule: \[ \frac{du}{dx} = 2(\sin^{-1} x) \cdot \frac{d}{dx}(\sin^{-1} x) \] We know that: \[ \frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \] Thus, \[ \frac{du}{dx} = 2(\sin^{-1} x) \cdot \frac{1}{\sqrt{1 - x^2}} \] ### Step 4: Substitute back into the derivative Now we can substitute \(u\) and \(\frac{du}{dx}\) back into the derivative of \(y\): \[ \frac{dy}{dx} = a^{(\sin^{-1} x)^2} \ln(a) \cdot \frac{du}{dx} \] Substituting \(\frac{du}{dx}\): \[ \frac{dy}{dx} = a^{(\sin^{-1} x)^2} \ln(a) \cdot 2(\sin^{-1} x) \cdot \frac{1}{\sqrt{1 - x^2}} \] ### Step 5: Final expression Combining everything, we get: \[ \frac{dy}{dx} = 2a^{(\sin^{-1} x)^2} \ln(a) \cdot \frac{\sin^{-1} x}{\sqrt{1 - x^2}} \] This is the required derivative \(\frac{dy}{dx}\). ---

To find \(\frac{dy}{dx}\) for the function \(y = a^{(\sin^{-1} x)^2}\), we will use the chain rule and the properties of logarithmic differentiation. Let's go through the steps systematically. ### Step 1: Identify the function We have: \[ y = a^{(\sin^{-1} x)^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the functions: y=x^3e^xsinx

Find (dy)/(dx) for the function: y= Sin 5x

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Find (dy)/(dx) for the function: y=x^3 + e^(2x)

Find (dy)/(dx) for the function: y=sin 4x - (1/x^4)

Find (dy)/(dx) for the function: y=e^x + cos x

Find (dy)/(dx) for the function: y= sin x + ln x

Find (dy)/(dx) for the functions: y=(x+sinx)/(x+cosx)

Find (dy)/(dx) for the functions: y=(x+sinx)/(x+cosx)