Home
Class 12
MATHS
Find (dy)/(dx) if y=log{e^x((x-2)/(x+2))...

Find `(dy)/(dx)` if `y=log{e^x((x-2)/(x+2))^(3/4)}`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \log\left(e^x \left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right), \] we can follow these steps: ### Step 1: Simplify the logarithmic expression Using the properties of logarithms, we can break down the expression: \[ y = \log(e^x) + \log\left(\left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right). \] ### Step 2: Apply logarithmic identities Using the identity \(\log(a^b) = b \log(a)\): \[ y = x + \frac{3}{4} \log\left(\frac{x-2}{x+2}\right). \] ### Step 3: Differentiate \(y\) with respect to \(x\) Now, we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx}(x) + \frac{d}{dx}\left(\frac{3}{4} \log\left(\frac{x-2}{x+2}\right)\right). \] The derivative of \(x\) is \(1\). For the second term, we will use the chain rule and the quotient rule. ### Step 4: Differentiate the logarithmic term Using the quotient rule for \(\log\left(\frac{u}{v}\right)\): \[ \frac{d}{dx}\left(\log\left(\frac{x-2}{x+2}\right)\right) = \frac{1}{\frac{x-2}{x+2}} \cdot \frac{d}{dx}\left(\frac{x-2}{x+2}\right). \] Now, applying the quotient rule to \(\frac{x-2}{x+2}\): \[ \frac{d}{dx}\left(\frac{x-2}{x+2}\right) = \frac{(x+2)(1) - (x-2)(1)}{(x+2)^2} = \frac{x+2 - x + 2}{(x+2)^2} = \frac{4}{(x+2)^2}. \] ### Step 5: Substitute back into the derivative Now substituting back: \[ \frac{d}{dx}\left(\log\left(\frac{x-2}{x+2}\right)\right) = \frac{(x+2)}{(x-2)} \cdot \frac{4}{(x+2)^2} = \frac{4}{(x-2)(x+2)}. \] ### Step 6: Combine the results Now, we can combine the results: \[ \frac{dy}{dx} = 1 + \frac{3}{4} \cdot \frac{4}{(x-2)(x+2)} = 1 + \frac{3}{(x-2)(x+2)}. \] ### Step 7: Simplify the expression The expression can be simplified further: \[ \frac{dy}{dx} = 1 + \frac{3}{x^2 - 4}. \] ### Final Result Thus, the final answer is: \[ \frac{dy}{dx} = \frac{x^2 - 4 + 3}{x^2 - 4} = \frac{x^2 - 1}{x^2 - 4}. \] ---

To find \(\frac{dy}{dx}\) for the function \[ y = \log\left(e^x \left(\frac{x-2}{x+2}\right)^{\frac{3}{4}}\right), \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

find dy/dx if y= e^x+log2x

Find dy/dx if 2x-3y=e^x

Find dy/dx if y= e^x-2x

Find dy/dx if 2y=e^y-2x

Find dy/dx if y = e^x/x

Find dy/dx if y=e^(2x)

Find dy/dx if x=e^(2y)

Find dy/dx if y=e^(3x)

Find dy/dx if y=e^(3x)

Find dy/dx if y= x.e^x