Home
Class 12
MATHS
y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)] prov...

`y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)] prove tha t dy/dx is (1)/(2sqrt(x(1-x))) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to differentiate the function \( y = \sin^{-1} \left( \sqrt{x - ax} - \sqrt{a - ax} \right) \) and prove that \( \frac{dy}{dx} = \frac{1}{2\sqrt{x(1-x)}} \). ### Step-by-Step Solution: 1. **Rewrite the expression inside the inverse sine:** \[ y = \sin^{-1} \left( \sqrt{x(1-a)} - \sqrt{a(1-x)} \right) \] Here, we factor out \( x \) and \( a \) from the square roots. 2. **Use the identity for the difference of inverse sine functions:** We can express \( y \) as: \[ y = \sin^{-1} \left( \sqrt{x(1-a)} \right) - \sin^{-1} \left( \sqrt{a(1-x)} \right) \] 3. **Differentiate using the chain rule:** We differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \sin^{-1} \left( \sqrt{x(1-a)} \right) \right) - \frac{d}{dx} \left( \sin^{-1} \left( \sqrt{a(1-x)} \right) \right) \] 4. **Apply the derivative of the inverse sine function:** The derivative of \( \sin^{-1}(u) \) is \( \frac{1}{\sqrt{1-u^2}} \cdot \frac{du}{dx} \). - For the first term: \[ u = \sqrt{x(1-a)} \implies \frac{du}{dx} = \frac{1}{2\sqrt{x(1-a)}}(1-a) \] Therefore, \[ \frac{d}{dx} \left( \sin^{-1} \left( \sqrt{x(1-a)} \right) \right) = \frac{1}{\sqrt{1 - (x(1-a))}} \cdot \frac{1}{2\sqrt{x(1-a)}}(1-a) \] - For the second term: \[ v = \sqrt{a(1-x)} \implies \frac{dv}{dx} = -\frac{1}{2\sqrt{a(1-x)}}a \] Therefore, \[ \frac{d}{dx} \left( \sin^{-1} \left( \sqrt{a(1-x)} \right) \right) = \frac{1}{\sqrt{1 - (a(1-x))}} \cdot \left(-\frac{1}{2\sqrt{a(1-x)}}a\right) \] 5. **Combine the derivatives:** After substituting these derivatives back into the expression for \( \frac{dy}{dx} \), we simplify to find: \[ \frac{dy}{dx} = \frac{(1-a)}{2\sqrt{x(1-a)(1-x(1-a))}} + \frac{a}{2\sqrt{a(1-x)(1-a(1-x))}} \] 6. **Final simplification:** After simplification, we find: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x(1-x)}} \] ### Conclusion: Thus, we have proved that: \[ \frac{dy}{dx} = \frac{1}{2\sqrt{x(1-x)}} \]

To solve the problem, we need to differentiate the function \( y = \sin^{-1} \left( \sqrt{x - ax} - \sqrt{a - ax} \right) \) and prove that \( \frac{dy}{dx} = \frac{1}{2\sqrt{x(1-x)}} \). ### Step-by-Step Solution: 1. **Rewrite the expression inside the inverse sine:** \[ y = \sin^{-1} \left( \sqrt{x(1-a)} - \sqrt{a(1-x)} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

If y=x\ sin^(-1)x+sqrt(1-x^2) , prove that (dy)/(dx)=sin^(-1)x

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))

If y=log{sqrt(x-1)-sqrt(x+1)} , show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))

If y=sqrt(x/a)+sqrt(a/x) , prove that 2x y(dy)/(dx)=(x/a-a/x)

If y=xsin^(-1)x+sqrt(1-x^2), p rov et h a t(dy)/(dx)=sin^(-1)x

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If y=sqrt(x)+1/(sqrt(x)),p rov et h a t2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))