Home
Class 12
MATHS
Find (dy)/(dx) for the function: y=(log)...

Find `(dy)/(dx)` for the function: `y=(log)_esqrt((1+sinx)/(1-sinx)),w h e r ex=pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \[ y = \log_e \sqrt{\frac{1 + \sin x}{1 - \sin x}} \] at \(x = \frac{\pi}{3}\), we will follow these steps: ### Step 1: Simplify the function We start by simplifying the expression inside the logarithm. We can rewrite the square root as a power of \(1/2\): \[ y = \log_e \left( \frac{1 + \sin x}{1 - \sin x} \right)^{1/2} = \frac{1}{2} \log_e \left( \frac{1 + \sin x}{1 - \sin x} \right) \] ### Step 2: Differentiate using the chain rule Now we differentiate \(y\) with respect to \(x\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\frac{1 + \sin x}{1 - \sin x}} \cdot \frac{d}{dx} \left( \frac{1 + \sin x}{1 - \sin x} \right) \] ### Step 3: Differentiate the inner function Next, we need to differentiate \(\frac{1 + \sin x}{1 - \sin x}\) using the quotient rule: Let \(u = 1 + \sin x\) and \(v = 1 - \sin x\). Then, \[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Calculating \(\frac{du}{dx}\) and \(\frac{dv}{dx}\): \[ \frac{du}{dx} = \cos x, \quad \frac{dv}{dx} = -\cos x \] Now substituting into the quotient rule: \[ \frac{d}{dx} \left( \frac{1 + \sin x}{1 - \sin x} \right) = \frac{(1 - \sin x) \cos x - (1 + \sin x)(-\cos x)}{(1 - \sin x)^2} \] Simplifying the numerator: \[ = \frac{(1 - \sin x) \cos x + (1 + \sin x) \cos x}{(1 - \sin x)^2} = \frac{(1 - \sin x + 1 + \sin x) \cos x}{(1 - \sin x)^2} = \frac{2 \cos x}{(1 - \sin x)^2} \] ### Step 4: Substitute back into the derivative Now substituting back into the derivative of \(y\): \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1 - \sin x}{1 + \sin x} \cdot \frac{2 \cos x}{(1 - \sin x)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos x (1 - \sin x)}{(1 + \sin x)(1 - \sin x)^2} \] ### Step 5: Evaluate at \(x = \frac{\pi}{3}\) Now we evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{3}\): \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting these values: \[ \frac{dy}{dx} = \frac{\frac{1}{2} \left(1 - \frac{\sqrt{3}}{2}\right)}{\left(1 + \frac{\sqrt{3}}{2}\right)\left(1 - \frac{\sqrt{3}}{2}\right)^2} \] Calculating the terms: \[ 1 - \frac{\sqrt{3}}{2} = \frac{2 - \sqrt{3}}{2}, \quad 1 + \frac{\sqrt{3}}{2} = \frac{2 + \sqrt{3}}{2} \] Thus, \[ \frac{dy}{dx} = \frac{\frac{1}{2} \cdot \frac{2 - \sqrt{3}}{2}}{\frac{2 + \sqrt{3}}{2} \cdot \left(\frac{2 - \sqrt{3}}{2}\right)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{(2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})^2} \] ### Final Result After simplification, we find that: \[ \frac{dy}{dx} \text{ at } x = \frac{\pi}{3} = 2 \]

To find \(\frac{dy}{dx}\) for the function \[ y = \log_e \sqrt{\frac{1 + \sin x}{1 - \sin x}} \] at \(x = \frac{\pi}{3}\), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) for the functions: y=(x+sinx)/(x+cosx)

Find (dy)/(dx) for the functions: y=(x+sinx)/(x+cosx)

The function f(x)=log((1+sinx)/(1-sinx)) is

Find dy/dx for the function: f(x)=e^x(sinx-cosx) .

Find (dy)/(dx),w h e ny=3tanx+5(log)_a x+sqrt(x)-3e^x+1/xdot

Find dy/dx if y=e^x/sinx

If y= tan^(-1)sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) at x= (pi)/6 is.

Evaluate: inttan^(-1){sqrt(((1-sinx)/(1+sinx)))}\ dx ,\ -pi//2

Find (dy)/(dx) if, sinx y+cos(x+y)=1

y=e^(sin x)/sinx then (dy)/(dx)=