Home
Class 12
MATHS
y=(x+sin x)/(x+cos x) , fi nd dy/dx...

`y=(x+sin x)/(x+cos x) , fi nd dy/dx `

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{x + \sin x}{x + \cos x} \), we will use the quotient rule. The quotient rule states that if you have a function \( y = \frac{f(x)}{g(x)} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2} \] ### Step 1: Identify \( f(x) \) and \( g(x) \) Here, we identify: - \( f(x) = x + \sin x \) - \( g(x) = x + \cos x \) ### Step 2: Differentiate \( f(x) \) and \( g(x) \) Now we differentiate \( f(x) \) and \( g(x) \): - \( f'(x) = \frac{d}{dx}(x + \sin x) = 1 + \cos x \) - \( g'(x) = \frac{d}{dx}(x + \cos x) = 1 - \sin x \) ### Step 3: Apply the Quotient Rule Now we apply the quotient rule: \[ \frac{dy}{dx} = \frac{(x + \cos x)(1 + \cos x) - (x + \sin x)(1 - \sin x)}{(x + \cos x)^2} \] ### Step 4: Simplify the Numerator Now we simplify the numerator: 1. Expand \( (x + \cos x)(1 + \cos x) \): \[ = x(1 + \cos x) + \cos x(1 + \cos x) = x + x \cos x + \cos x + \cos^2 x \] 2. Expand \( (x + \sin x)(1 - \sin x) \): \[ = x(1 - \sin x) + \sin x(1 - \sin x) = x - x \sin x + \sin x - \sin^2 x \] 3. Combine the two expansions: \[ \text{Numerator} = (x + x \cos x + \cos x + \cos^2 x) - (x - x \sin x + \sin x - \sin^2 x) \] 4. Distributing the negative sign: \[ = x + x \cos x + \cos x + \cos^2 x - x + x \sin x - \sin x + \sin^2 x \] 5. Combine like terms: \[ = x \cos x + x \sin x + \cos x - \sin x + \cos^2 x + \sin^2 x \] 6. Use the Pythagorean identity \( \cos^2 x + \sin^2 x = 1 \): \[ = x \cos x + x \sin x + \cos x - \sin x + 1 \] ### Step 5: Write the Final Derivative Thus, the derivative is: \[ \frac{dy}{dx} = \frac{x \cos x + x \sin x + \cos x - \sin x + 1}{(x + \cos x)^2} \]

To find the derivative of the function \( y = \frac{x + \sin x}{x + \cos x} \), we will use the quotient rule. The quotient rule states that if you have a function \( y = \frac{f(x)}{g(x)} \), then the derivative \( \frac{dy}{dx} \) is given by: \[ \frac{dy}{dx} = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2} \] ### Step 1: Identify \( f(x) \) and \( g(x) \) Here, we identify: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y = (cos x - sin x)/( cos x + sin x ) , "then " (dy)/(dx)

if y=(sin(x+9))/(cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sin x)^(x)+x^(2) find (dy)/(dx)

If y=x^(y)+(sin x)^(x) find dy/dx

y=e^(sin x^(3)) fi nd dy/dx

If y= sin 7x + cos 5x + e^x then dy/dx

If y=sin^(-1)x+cos^(-1)x ,\ find (dy)/(dx) .

y=sqrt(sin +cos x+sqrt(sinx+ cos x +sqrt(sin x +cos x +....oo))) then find dy/dx

If y=a sin x + b cos x , then ((dy)/dx)^2+y^2 is

If y=sin sqrt(x)*cos sqrt(x) ,then dy/dx=