Home
Class 12
MATHS
If y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n)) t...

If `y=(1+x)(1+x^2)(1+x^4)...(1+x^(2^n))` then `(dy)/(dx)` at `x=0` is

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(x=0\) for the function \[ y = (1+x)(1+x^2)(1+x^4)\ldots(1+x^{2^n}), \] we will use the product rule of differentiation. ### Step 1: Differentiate using the product rule The product rule states that if \(y = f_1 f_2 f_3 \ldots f_n\), then \[ \frac{dy}{dx} = f_1' f_2 f_3 \ldots f_n + f_1 f_2' f_3 \ldots f_n + f_1 f_2 f_3' \ldots f_n + \ldots + f_1 f_2 f_3 \ldots f_n'. \] In our case, we have: - \(f_1 = 1+x\) - \(f_2 = 1+x^2\) - \(f_3 = 1+x^4\) - \(\ldots\) - \(f_{n+1} = 1+x^{2^n}\) ### Step 2: Apply the product rule We will differentiate each term one by one: 1. Differentiate \(f_1 = 1+x\): \[ f_1' = 1. \] The contribution to \(\frac{dy}{dx}\) is: \[ 1 \cdot (1+x^2)(1+x^4)\ldots(1+x^{2^n}). \] 2. Differentiate \(f_2 = 1+x^2\): \[ f_2' = 2x. \] The contribution to \(\frac{dy}{dx}\) is: \[ (1+x) \cdot 2x \cdot (1+x^4)\ldots(1+x^{2^n}). \] 3. Differentiate \(f_3 = 1+x^4\): \[ f_3' = 4x^3. \] The contribution to \(\frac{dy}{dx}\) is: \[ (1+x)(1+x^2) \cdot 4x^3 \cdot (1+x^4)\ldots(1+x^{2^n}). \] 4. Continue this process until \(f_{n+1} = 1+x^{2^n}\): \[ f_{n+1}' = 2^n x^{2^n - 1}. \] The contribution to \(\frac{dy}{dx}\) is: \[ (1+x)(1+x^2)(1+x^4)\ldots(1+x^{2^{n-1}}) \cdot 2^n x^{2^n - 1}. \] ### Step 3: Evaluate at \(x = 0\) Now, we need to evaluate \(\frac{dy}{dx}\) at \(x=0\): 1. For the first term: \[ (1+x^2)(1+x^4)\ldots(1+x^{2^n}) \text{ at } x=0 \text{ gives } 1. \] 2. For the second term: \[ (1+x) \cdot 2x \cdot (1+x^4)\ldots(1+x^{2^n}) \text{ at } x=0 \text{ gives } 0. \] 3. For the third term: \[ (1+x)(1+x^2) \cdot 4x^3 \cdot (1+x^4)\ldots(1+x^{2^n}) \text{ at } x=0 \text{ gives } 0. \] 4. Continuing this way, all terms involving \(x\) will vanish at \(x=0\), except for the first term. Thus, we find that: \[ \frac{dy}{dx} \bigg|_{x=0} = 1. \] ### Final Answer The value of \(\frac{dy}{dx}\) at \(x=0\) is \[ \boxed{1}. \]

To find \(\frac{dy}{dx}\) at \(x=0\) for the function \[ y = (1+x)(1+x^2)(1+x^4)\ldots(1+x^{2^n}), \] we will use the product rule of differentiation. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.1|1 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=(1+x)(1+x^2)(1+x^4)(1+x^(2n)), then find (dy)/(dx)a tx=0.

If y=(1+x)(1+x^2)(1+x^4)(1+x^8).........(1+x^(2n)) , find (dy)/(dx) .

If y=(1+x)(1+x^2)(1+x^4)(1+x^8)...........(1+x^(2n)) ,find dy//dx at x=0

If t a n y=(2^x)/(1+2^(2x+1)),t h e n(dy)/(dx) at x=0 is

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is

If y=log{((1+x)/(1-x))^(1//4)}-(1)/(2)tan^(-1)x," then "(dy)/(dx)=

(1+x^(2))tan^(-1)x*(dy)/(dx)+2=0

If x^2+x y+y^2=7/4, then (dy)/(dx) at x=1 and y=1/2 is:

If y=(1+1/(x^2))/(1-1/(x^2)) , then (dy)/(dx) = a. -(4x)/((x^2-1)^2) b. -(4x)/(x^2-1) c. (1-x^2)/(4x) d. (4x)/(x^2-1)