Home
Class 12
MATHS
If y=btan^(-1)(x/a+tan^(-1) y/x),f i nd ...

If `y=btan^(-1)(x/a+tan^(-1) `y`/x),f i nd (dy)/(dx)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right)\), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \] Dividing both sides by \(b\): \[ \frac{y}{b} = \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \] ### Step 2: Applying the Tangent Function Taking the tangent of both sides: \[ \tan\left(\frac{y}{b}\right) = \frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right) \] ### Step 3: Differentiating Both Sides Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}\left(\tan\left(\frac{y}{b}\right)\right) = \frac{d}{dx}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \] Using the chain rule on the left side: \[ \sec^2\left(\frac{y}{b}\right) \cdot \frac{1}{b} \cdot \frac{dy}{dx} \] On the right side, we differentiate each term: \[ \frac{1}{a} + \frac{d}{dx}\left(\tan^{-1}\left(\frac{y}{x}\right)\right) \] ### Step 4: Differentiating \(\tan^{-1}\left(\frac{y}{x}\right)\) Using the chain rule and quotient rule: \[ \frac{d}{dx}\left(\tan^{-1}\left(\frac{y}{x}\right)\right) = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{d}{dx}\left(\frac{y}{x}\right) \] Now applying the quotient rule: \[ \frac{d}{dx}\left(\frac{y}{x}\right) = \frac{x \cdot \frac{dy}{dx} - y}{x^2} \] Thus, \[ \frac{d}{dx}\left(\tan^{-1}\left(\frac{y}{x}\right)\right) = \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{x \cdot \frac{dy}{dx} - y}{x^2} \] ### Step 5: Combining the Derivatives Now we combine everything: \[ \frac{1}{b} \sec^2\left(\frac{y}{b}\right) \frac{dy}{dx} = \frac{1}{a} + \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{x \cdot \frac{dy}{dx} - y}{x^2} \] ### Step 6: Isolate \(\frac{dy}{dx}\) Rearranging the equation to isolate \(\frac{dy}{dx}\): \[ \frac{1}{b} \sec^2\left(\frac{y}{b}\right) \frac{dy}{dx} - \frac{1}{1 + \left(\frac{y}{x}\right)^2} \cdot \frac{x \cdot \frac{dy}{dx}}{x^2} = \frac{1}{a} - \frac{y}{x^2 + y^2} \] ### Step 7: Solve for \(\frac{dy}{dx}\) Finally, we can express \(\frac{dy}{dx}\) in terms of \(x\) and \(y\): \[ \frac{dy}{dx} = \frac{\frac{1}{a} - \frac{y}{x^2 + y^2}}{\frac{1}{b} \sec^2\left(\frac{y}{b}\right) - \frac{x}{x^2 + y^2}} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\frac{1}{a} - \frac{y}{x^2 + y^2}}{\frac{1}{b} \sec^2\left(\frac{y}{b}\right) - \frac{x}{x^2 + y^2}} \] ---

To find \(\frac{dy}{dx}\) for the equation \(y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right)\), we will follow these steps: ### Step 1: Rearranging the Equation We start with the given equation: \[ y = b \tan^{-1}\left(\frac{x}{a} + \tan^{-1}\left(\frac{y}{x}\right)\right) \] Dividing both sides by \(b\): ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.2|40 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=btan^(-1)(x/a+tan^(-1)y/x) ,find (dy)/(dx)dot

If y=btan^(-1)(x/a+tan^(-1)y/x) ,find (dy)/(dx)dot

If y=btan^(-1)(x/a+"tan"^(-1)y/x) ,find (dy)/(dx)dot

If y=btan^(-1)(x/a+tan^(-1)y/x),find (dy)/(dx)'

y=tan^(- 1)sqrt((1-x)/(1+x))f i n d(dy)/(dx)

If y=e^((tan^(-1)x) then find (dy)/(dx)

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

If y=tan^(-1)((1-x)/(1+x)) , find (dy)/(dx) .

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If y^x=x^y ,then find (dy)/(dx)dot