Home
Class 12
MATHS
"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)...

`"Let "f(x)=|{:(cos(x+x^(2)),sin (x+x^(2)),-cos(x+x^(2))),(sin (x-x^(2)),cos (x-x^(2)),sin (x-x^(2))),(sin 2x, 0, sin (2x^(2))):}|.`
Find the value of f'(0).

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(0) \) for the given function \[ f(x) = \begin{vmatrix} \cos(x + x^2) & \sin(x + x^2) & -\cos(x + x^2) \\ \sin(x - x^2) & \cos(x - x^2) & \sin(x - x^2) \\ \sin(2x) & 0 & \sin(2x^2) \end{vmatrix}, \] we will follow these steps: ### Step 1: Compute \( f(0) \) First, we need to evaluate \( f(0) \): \[ f(0) = \begin{vmatrix} \cos(0 + 0^2) & \sin(0 + 0^2) & -\cos(0 + 0^2) \\ \sin(0 - 0^2) & \cos(0 - 0^2) & \sin(0 - 0^2) \\ \sin(2 \cdot 0) & 0 & \sin(2 \cdot 0^2) \end{vmatrix} \] This simplifies to: \[ f(0) = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix} \] The determinant of a matrix with a row of zeros is zero: \[ f(0) = 0 \] ### Step 2: Compute \( f'(x) \) To find \( f'(x) \), we will use the property of determinants that allows us to differentiate under the determinant sign. We differentiate each row of the determinant. Using the formula for the derivative of a determinant, we have: \[ f'(x) = \begin{vmatrix} \frac{d}{dx}(\cos(x + x^2)) & \frac{d}{dx}(\sin(x + x^2)) & \frac{d}{dx}(-\cos(x + x^2)) \\ \frac{d}{dx}(\sin(x - x^2)) & \frac{d}{dx}(\cos(x - x^2)) & \frac{d}{dx}(\sin(x - x^2)) \\ \frac{d}{dx}(\sin(2x)) & 0 & \frac{d}{dx}(\sin(2x^2)) \end{vmatrix} \] ### Step 3: Differentiate each term Now we compute the derivatives: 1. For the first row: - \( \frac{d}{dx}(\cos(x + x^2)) = -\sin(x + x^2)(1 + 2x) \) - \( \frac{d}{dx}(\sin(x + x^2)) = \cos(x + x^2)(1 + 2x) \) - \( \frac{d}{dx}(-\cos(x + x^2)) = \sin(x + x^2)(1 + 2x) \) 2. For the second row: - \( \frac{d}{dx}(\sin(x - x^2)) = \cos(x - x^2)(1 - 2x) \) - \( \frac{d}{dx}(\cos(x - x^2)) = -\sin(x - x^2)(1 - 2x) \) - \( \frac{d}{dx}(\sin(x - x^2)) = \cos(x - x^2)(1 - 2x) \) 3. For the third row: - \( \frac{d}{dx}(\sin(2x)) = 2\cos(2x) \) - \( \frac{d}{dx}(0) = 0 \) - \( \frac{d}{dx}(\sin(2x^2)) = 2x\cos(2x^2) \) ### Step 4: Substitute \( x = 0 \) Now substituting \( x = 0 \) into the derivatives: \[ f'(0) = \begin{vmatrix} -\sin(0)(1 + 0) & \cos(0)(1 + 0) & \sin(0)(1 + 0) \\ \cos(0)(1 - 0) & -\sin(0)(1 - 0) & \cos(0)(1 - 0) \\ 2\cos(0) & 0 & 0 \end{vmatrix} \] This simplifies to: \[ f'(0) = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{vmatrix} \] ### Step 5: Calculate the determinant Calculating this determinant: \[ f'(0) = 0 \cdot \begin{vmatrix} 0 & 1 \\ 0 & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} + 0 \cdot \begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix} \] Calculating the 2x2 determinant: \[ \begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = (1)(0) - (1)(2) = -2 \] Thus, \[ f'(0) = -(-2) = 2 \] ### Final Answer Therefore, the value of \( f'(0) \) is: \[ \boxed{2} \]

To find the value of \( f'(0) \) for the given function \[ f(x) = \begin{vmatrix} \cos(x + x^2) & \sin(x + x^2) & -\cos(x + x^2) \\ \sin(x - x^2) & \cos(x - x^2) & \sin(x - x^2) \\ \sin(2x) & 0 & \sin(2x^2) \end{vmatrix}, ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|[cos(x+x^2),sin(x+x^2),-cos(x+x^2)],[sin(x-x^2),cos(x-x^2), sin(x-x^2)],[sin2x,0,sin(2x^2)]| . Find the value of f^(prime)(0) .

f(x)=|{:(cos x, x, 1),(2sin x, x^(2), 2x),(tan x, x, 1):}|." Then find the vlue of lim_(x to 0) (f'(x))/(x).

If f(x)=|"cos"(x+x^2)"sin"(x+x^2)-"cos"(x+x^2)"sin"(x-x^2)"cos"(x-x^2)sin(x-x^2)sin2x0sin2x^2|,t h e n f(-2)=0 (b) f^(prime)(-1/2)=0 f^(prime)(-1)=-2 (d) f^(0)=4

int (cos^(2)x+sin 2x)/((2 cos x- sin x)^(2))dx

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

" Let " =|{:(cos x,,sin x,,cosx),( cos 2x,,sin 2x,,2cos 2x),(cos 3x,,sin 3x,,3cos 3x):}| then find the values of f(0) and f' (pi//2) .

(i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| . (ii) Let A,B and C be the angles of triangle such that Agt=Bgt=C. Find the minimum value of Delta where Delta=|{:(sin^(2)A,sinAcosA,cos^(2)A),(sin^(2) B,sinBcosB,cos^(2)B),(sin^(2)C,sinCcosC,cos^(2)C):}| .

Let f(x)= |{:(cosx,sinx,cosx),(cos2x,sin2x,2cos2x),(cos3x,sin3x,3cos3x):}| then find the value of f'((pi)/(2)) .

int(sin x cos x)/(a^(2)sin^(2)x+b^(2)cos^(2)x)dx

If f(x) = |{:( cos (2x) ,, cos ( 2x ) ,, sin ( 2x) ), ( - cos x,, cosx ,, - sin x ), ( sinx,, sin x,, cos x ):}| , then