Home
Class 12
MATHS
"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(...

`"Let "g(x)=|{:(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c)):}|,`
where c is constant, then find `lim_(xrarr0) (g(x))/(x).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{g(x)}{x} \] where \[ g(x) = \begin{vmatrix} f(x+c) & f(x+2c) & f(x+3c) \\ f(c) & f(2c) & f(3c) \\ f'(c) & f'(2c) & f'(3c) \end{vmatrix} \] ### Step-by-Step Solution: **Step 1: Evaluate \( g(0) \)** First, we need to evaluate \( g(0) \): \[ g(0) = \begin{vmatrix} f(c) & f(2c) & f(3c) \\ f(c) & f(2c) & f(3c) \\ f'(c) & f'(2c) & f'(3c) \end{vmatrix} \] Notice that the first two rows are identical, which means the determinant is zero: \[ g(0) = 0 \] **Step 2: Check the limit form** Since \( g(0) = 0 \), we have: \[ \lim_{x \to 0} \frac{g(x)}{x} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's rule. **Step 3: Apply L'Hôpital's Rule** We differentiate \( g(x) \) with respect to \( x \): Using properties of determinants, we differentiate the first row of the determinant: \[ g'(x) = \begin{vmatrix} f'(x+c) & f'(x+2c) & f'(x+3c) \\ f(c) & f(2c) & f(3c) \\ f'(c) & f'(2c) & f'(3c) \end{vmatrix} \] **Step 4: Evaluate \( g'(0) \)** Now we evaluate \( g'(0) \): \[ g'(0) = \begin{vmatrix} f'(c) & f'(2c) & f'(3c) \\ f(c) & f(2c) & f(3c) \\ f'(c) & f'(2c) & f'(3c) \end{vmatrix} \] Again, the first and third rows are identical, so the determinant is zero: \[ g'(0) = 0 \] **Step 5: Apply L'Hôpital's Rule Again** Since we still have \( \frac{0}{0} \), we apply L'Hôpital's rule again: \[ \lim_{x \to 0} \frac{g'(x)}{1} \] Differentiate \( g'(x) \) again: \[ g''(x) = \begin{vmatrix} f''(x+c) & f''(x+2c) & f''(x+3c) \\ f(c) & f(2c) & f(3c) \\ f'(c) & f'(2c) & f'(3c) \end{vmatrix} \] **Step 6: Evaluate \( g''(0) \)** Now we evaluate \( g''(0) \): \[ g''(0) = \begin{vmatrix} f''(c) & f''(2c) & f''(3c) \\ f(c) & f(2c) & f(3c) \\ f'(c) & f'(2c) & f'(3c) \end{vmatrix} \] This determinant is not guaranteed to be zero, so we can compute it directly. ### Final Result Thus, the limit we are looking for is: \[ \lim_{x \to 0} \frac{g(x)}{x} = \frac{g''(0)}{1} = g''(0) \]

To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{g(x)}{x} \] where ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If g(x)=|(f(x+c),f(x+2c),f(x+3c)),(f(c),f(2c),f(3c)),(f'(c),f'(2c),f'(3c))|, where c is a constant, then lim_(x rarr0)(g(x))/(x) is equal to

Let g(x)=|(f(x+alpha), f(x+2a), f(x+3alpha)), f(alpha), f(2alpha), f(3alpha),(f\'(alpha),(f\'(2alpha), f\'(3alpha))| , where alpha is a constant then Lt_(xrarr0(g(x))/x= (A) 0 (B) 1 (C) -1 (D) none of these

Write the value of lim_(x->c)(f(x)-f(c))/(x-c) .

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

If intsqrt(1-cosx)f(x)dx=2/3(1-cosx)^(3//2)+c where c is constant of integration then f(x) equals:

If (lim)_(x->c)(f(x)-f(c))/(x-c) exists finitely, write the value of (lim)_(x->c)f(x) .

Suppose we define integral using the following formula int_(a)^(b)f(x)dx = (b-a)/(2) (f(a)+f(b)) , for more accurate result for c in (a, b), F(c) = (c-a)/(2) (f(a)+f(c)) + (b-c)/(2)(f(b) + f(c)) . When c = (a+b)/(2) , then int_(a)^(b) f(x)dx = (b-a)/(4)(f(a) + f(b) + 2f(c)) . lim_(trarra)(int_(a)^(t)f(x) dx -((t-a))/(2)(f(t)+f(a)))/((t-a)^(3))=0 forall a Then the degree of f(x) can at most be

Let f(x)=a+b|x|+c|x|^(2) , where a,b,c are real constants. The, f'(0) exists if

If f(x) is differentiable at x=c , then write the value of (lim)_(x->c)f(x) .