Home
Class 12
MATHS
If f(x)=(1+x)^2, then the value of f(x0)...

If `f(x)=(1+x)^2,` then the value of `f(x0)+f^(prime)(0)` `+(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ f(0) + f'(0) + \frac{f''(0)}{2!} + \frac{f'''(0)}{3!} + \ldots + \frac{f^{(n)}(0)}{n!} \] where \( f(x) = (1 + x)^2 \). ### Step 1: Calculate \( f(0) \) We start by substituting \( x = 0 \) into the function: \[ f(0) = (1 + 0)^2 = 1 \] ### Step 2: Calculate \( f'(x) \) Next, we find the first derivative of \( f(x) \): \[ f'(x) = \frac{d}{dx}[(1 + x)^2] = 2(1 + x) \cdot \frac{d}{dx}(1 + x) = 2(1 + x) \] ### Step 3: Calculate \( f'(0) \) Now, substitute \( x = 0 \) into \( f'(x) \): \[ f'(0) = 2(1 + 0) = 2 \] ### Step 4: Calculate \( f''(x) \) Next, we find the second derivative of \( f(x) \): \[ f''(x) = \frac{d}{dx}[f'(x)] = \frac{d}{dx}[2(1 + x)] = 2 \] ### Step 5: Calculate \( f''(0) \) Since \( f''(x) \) is constant, we have: \[ f''(0) = 2 \] ### Step 6: Calculate \( f'''(x) \) Now, we find the third derivative of \( f(x) \): \[ f'''(x) = \frac{d}{dx}[f''(x)] = \frac{d}{dx}[2] = 0 \] ### Step 7: Calculate \( f^{(n)}(x) \) for \( n \geq 3 \) For \( n \geq 3 \): \[ f^{(n)}(x) = 0 \] Thus, \( f^{(n)}(0) = 0 \) for all \( n \geq 3 \). ### Step 8: Substitute into the series Now we can substitute all these values into the series: \[ f(0) + f'(0) + \frac{f''(0)}{2!} + \frac{f'''(0)}{3!} + \ldots + \frac{f^{(n)}(0)}{n!} \] This becomes: \[ 1 + 2 + \frac{2}{2!} + 0 + 0 + \ldots + 0 \] Calculating the terms: \[ 1 + 2 + \frac{2}{2} = 1 + 2 + 1 = 4 \] ### Final Answer The value of the expression is: \[ \boxed{4} \]

To solve the problem, we need to evaluate the expression: \[ f(0) + f'(0) + \frac{f''(0)}{2!} + \frac{f'''(0)}{3!} + \ldots + \frac{f^{(n)}(0)}{n!} \] where \( f(x) = (1 + x)^2 \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1-x)^n, then the value of f(0)+f^(prime)(0)+(f^('')(0))/(2!)+(f^(''')(0))/(3!)+......(f^n(0))/(n !)dot

if f(x)=e^(-1/x^2),x!=0 and f (0)=0 then f'(0) is

If f(x)=m x+ca n df(0)=f^(prime)(0)=1. What is f(2)?

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0 for a l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d) none of these

if f(x)=3e^(x^2) then f'(x)-2xf(x)+1/3f(0)-f'(0)

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

A function f: R->R satisfies sinxcosy(f(2x+2y)-f(2x-2y)=cosxsiny(f(2x+2y)+f(2x-2y))dot If f^(prime)(0)=1/2,t h e n (a) f^(primeprime)(x)=f(x)=0 (b) 4f^(primeprime)(x)+f(x)=0 (c) f^(primeprime)(x)+f(x)=0 (d) 4f^(primeprime)(x)-f(x)=0

If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) derivative of f(x) at x=0 , then the value of sum_(r=0)^(oo)((f^(r)(0)))/(r!) is equal to

If f'(x)=f(x)+ int_(0)^(1)f(x)dx , given f(0)=1 , then the value of f(log_(e)2) is