Home
Class 12
MATHS
If y sin (sin x) and (d^(2)y)/(dx^(2))+(...

If y sin (sin x) and `(d^(2)y)/(dx^(2))+(dy)/(dx)` tan x + f(x) = 0, then find f(x).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the function \( f(x) \) given the equation: \[ \frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + f(x) = 0 \] where \( y = \sin(\sin x) \). ### Step 1: Differentiate \( y \) First, we differentiate \( y \) with respect to \( x \): \[ y = \sin(\sin x) \] Using the chain rule, we find the first derivative \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \cos(\sin x) \cdot \frac{d}{dx}(\sin x) = \cos(\sin x) \cdot \cos x \] ### Step 2: Differentiate \( \frac{dy}{dx} \) Next, we differentiate \( \frac{dy}{dx} \) to find \( \frac{d^2y}{dx^2} \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx} \left( \cos(\sin x) \cdot \cos x \right) \] Using the product rule: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(\cos(\sin x)) \cdot \cos x + \cos(\sin x) \cdot \frac{d}{dx}(\cos x) \] Now, differentiate \( \cos(\sin x) \) using the chain rule: \[ \frac{d}{dx}(\cos(\sin x)) = -\sin(\sin x) \cdot \cos x \] And differentiate \( \cos x \): \[ \frac{d}{dx}(\cos x) = -\sin x \] Putting it all together: \[ \frac{d^2y}{dx^2} = (-\sin(\sin x) \cdot \cos x) \cdot \cos x + \cos(\sin x) \cdot (-\sin x) \] This simplifies to: \[ \frac{d^2y}{dx^2} = -\sin(\sin x) \cdot \cos^2 x - \sin x \cdot \cos(\sin x) \] ### Step 3: Substitute into the original equation Now, we substitute \( \frac{d^2y}{dx^2} \) and \( \frac{dy}{dx} \) into the original equation: \[ -\sin(\sin x) \cdot \cos^2 x - \sin x \cdot \cos(\sin x) + \left( \cos(\sin x) \cdot \cos x \right) \tan x + f(x) = 0 \] ### Step 4: Simplify the equation We can express \( \tan x \) as \( \frac{\sin x}{\cos x} \): \[ -\sin(\sin x) \cdot \cos^2 x - \sin x \cdot \cos(\sin x) + \cos(\sin x) \cdot \cos x \cdot \frac{\sin x}{\cos x} + f(x) = 0 \] This simplifies to: \[ -\sin(\sin x) \cdot \cos^2 x - \sin x \cdot \cos(\sin x) + \sin x \cdot \cos(\sin x) + f(x) = 0 \] The terms \( -\sin x \cdot \cos(\sin x) \) and \( +\sin x \cdot \cos(\sin x) \) cancel each other out: \[ -\sin(\sin x) \cdot \cos^2 x + f(x) = 0 \] ### Step 5: Solve for \( f(x) \) Rearranging gives us: \[ f(x) = \sin(\sin x) \cdot \cos^2 x \] ### Final Answer Thus, the function \( f(x) \) is: \[ f(x) = \sin(\sin x) \cdot \cos^2 x \] ---

To solve the problem, we need to find the function \( f(x) \) given the equation: \[ \frac{d^2y}{dx^2} + \frac{dy}{dx} \tan x + f(x) = 0 \] where \( y = \sin(\sin x) \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y= sin x+cos x then (d^(2)y)/(dx^(2)) is :-

If y=x^(sin x), then find (dy)/(dx)

If y=sin (sinx) prove that (d^(2)y)/(dx^(2)) + "tan x" (dy)/(dx) + y cos^(2) x =0 .

If y^(x)=x^(sin y) find (dy)/(dx)

If y=cos (sin x) , show that (d^2y)/(dx^2)+tan x""(dy)/(dx)+y cos^2 x=0

If y=(sin x)^(x)+x^(2) find (dy)/(dx)

If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/(dx)=- ky, where k =

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y="sin"(sinx),"prove that" (d^2y)/(dx^2)+tanx(dy)/(dx)+ycos^2x=0.

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .