Home
Class 12
MATHS
If x=acos^3theta,y=bsin^3theta,fin d(d^3...

If `x=acos^3theta,y=bsin^3theta,fin d(d^3y)/(dx^3)` at `theta=0.`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{d^3y}{dx^3}\) at \(\theta = 0\) given \(x = a \cos^3 \theta\) and \(y = b \sin^3 \theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = a \cos^3 \theta \] Using the chain rule, we differentiate: \[ \frac{dx}{d\theta} = a \cdot 3 \cos^2 \theta \cdot (-\sin \theta) = -3a \cos^2 \theta \sin \theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = b \sin^3 \theta \] Using the chain rule, we differentiate: \[ \frac{dy}{d\theta} = b \cdot 3 \sin^2 \theta \cdot \cos \theta = 3b \sin^2 \theta \cos \theta \] ### Step 3: Find \(\frac{dy}{dx}\) Now we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{3b \sin^2 \theta \cos \theta}{-3a \cos^2 \theta \sin \theta} \] Simplifying this gives: \[ \frac{dy}{dx} = -\frac{b}{a} \cdot \frac{\sin \theta}{\cos \theta} = -\frac{b}{a} \tan \theta \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(\theta = 0\) Now, substituting \(\theta = 0\): \[ \frac{dy}{dx} = -\frac{b}{a} \tan(0) = -\frac{b}{a} \cdot 0 = 0 \] ### Step 5: Find \(\frac{d^2y}{dx^2}\) To find \(\frac{d^2y}{dx^2}\), we differentiate \(\frac{dy}{dx}\) with respect to \(\theta\) and then divide by \(\frac{dx}{d\theta}\): \[ \frac{d^2y}{dx^2} = \frac{d}{d\theta}\left(-\frac{b}{a} \tan \theta\right) \cdot \frac{1}{\frac{dx}{d\theta}} \] Calculating the derivative: \[ \frac{d}{d\theta}\left(-\frac{b}{a} \tan \theta\right) = -\frac{b}{a} \sec^2 \theta \] Thus, \[ \frac{d^2y}{dx^2} = \frac{-\frac{b}{a} \sec^2 \theta}{-3a \cos^2 \theta \sin \theta} = \frac{\frac{b}{a} \sec^2 \theta}{3a \cos^2 \theta \sin \theta} \] At \(\theta = 0\): \[ \sec^2(0) = 1 \quad \text{and} \quad \sin(0) = 0 \] This means \(\frac{d^2y}{dx^2}\) is undefined at \(\theta = 0\). ### Step 6: Find \(\frac{d^3y}{dx^3}\) Since \(\frac{d^2y}{dx^2}\) is undefined at \(\theta = 0\), \(\frac{d^3y}{dx^3}\) will also be undefined at this point. ### Conclusion Thus, the final result is: \[ \frac{d^3y}{dx^3} \text{ is undefined at } \theta = 0. \]

To find \(\frac{d^3y}{dx^3}\) at \(\theta = 0\) given \(x = a \cos^3 \theta\) and \(y = b \sin^3 \theta\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = a \cos^3 \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Execrises|137 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=asec^3theta,y=atan^3theta, find (d^2y)/(dx^2) at theta=pi/4

If x=acos^3theta,y=a sin^3theta then find (d^2y)/(dx^(2))

If x=asec^3theta and y=atan^3theta, find (dy)/(dx) at theta=pi/3

If x=asec^3theta and y=atan^3theta , find (dy)/(dx) at theta=pi/3dot

x=acos^(3)theta,y=asin^(3)theta then find (d^(2)y)/(dx^(2))

If x=a(1-cos^3theta),y=asin^3theta,"prove that"(d^2y)/(dx^2)=(32)/(27a) "at" theta=pi/6dot

If x=a\ s e c^3theta and y=a\ t a n^3theta , find (dy)/(dx) at theta=pi/3

If x=a(1-cos^3theta) , y=a\ sin^3theta , prove that (d^2y)/(dx^2)=(32)/(27\ a) at theta=pi/6 .

If x=acos^3theta,y=a sin^3theta, then find the value of d2y/dx2 at θ=π/6

If x=a\ cos^3theta,\ \ y=a\ sin^3theta , then sqrt(1+((dy)/(dx))^2)= (a) t a n^2theta (b) s e c^2theta (c) sectheta (d) |sectheta|