Home
Class 12
MATHS
(d)/(dx)cos^(-1)sqrt(cosx),0ltxlt(pi)/(2...

`(d)/(dx)cos^(-1)sqrt(cosx),0ltxlt(pi)/(2)` is equal to

A

`(1)/(2)sqrt(1+sec x)`

B

`sqrt(1+sec x)`

C

`-(1)/(2)sqrt(1+sec x)`

D

`-sqrt(1+sec x)`

Text Solution

AI Generated Solution

To solve the problem \(\frac{d}{dx} \cos^{-1}(\sqrt{\cos x})\) for \(0 < x < \frac{\pi}{2}\), we will follow these steps: ### Step 1: Differentiate the function We start by applying the chain rule for differentiation. The derivative of \(\cos^{-1}(u)\) is given by \(-\frac{1}{\sqrt{1-u^2}}\) where \(u = \sqrt{\cos x}\). So, we have: \[ \frac{d}{dx} \cos^{-1}(\sqrt{\cos x}) = -\frac{1}{\sqrt{1 - (\sqrt{\cos x})^2}} \cdot \frac{d}{dx}(\sqrt{\cos x}) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|24 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(cos^(-1)sqrt(cosx)) is equal to (a) 1/2sqrt(1+s e cx) (b) sqrt(1+secx) (c) -1/2sqrt(1+secx) (d) -sqrt(1+secx)

d/dx cos^-1 sqrtcos x is equal to

Differentiate each of the following functions with respect to x : (i) sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2))ltxlt1/(sqrt(2)) (ii) cos^(-1)(2x(sqrt(1-x^2)),-1/sqrt(2)ltxlt1/sqrt2

Differentiate tan^(-1)((2x)/(1-x^2))+cos^(-1)((1-x^2)/(1+x^2)) with respect to x .

Differentiate sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) with respect to x ,if x in (0,1)

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then intg(x)((2-sin2x)/(1-cos2x))dx is equal to

Differentiate the following functions with respect to x (i) x^(2/3)+7e-5/x+7tanx (ii) x^2dotlnxdote^x (iii) lntan(pi/4+x/2) (iv) (sinx-x cos x)/(x sin x+cos x) (v) tan(tan^(-1)sqrt((1-cosx)/(1+cosx))),0ltxltpi

Differentiate sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-x^2)/(1+x^2)) , with respect to x , if x in (0,\ 1) .

Differentiate the following function with respect to x : cos^(-1){(x+sqrt(1-x^2))/(sqrt(2))}; -1 lt x lt 1

If x in (0,pi/2),t h e ns howt h a t d/(dx)cos^(-1){7/2(1+cos2x)+(sqrt(sin^2x-48cos^2x))sinx} =1+(7sinx)/sqrt(sin^2-48cos^2x)